• Применение светодиодов в электронных схемах. Характеристики светодиодов: потребление тока, напряжение, мощность и светоотдача Светодиод hl

    22.03.2024

    Несмотря на высокую стоимость, потребление электроэнергии полупроводниковыми светильниками (LED) намного меньше, чем у ламп накаливания, а срок службы в 5 раз больше. Схема светодиодной лампы работает при подаче 220 вольт, когда входной сигнал, вызывающий свечение, преобразуется до рабочей величины с помощью драйвера.

    Светодиодные светильники на 220 В

    Каким бы ни было напряжение питания, на один светодиод подается постоянное напряжение 1,8-4 В.

    Типы светодиодов

    Светодиод – это полупроводниковый кристалл из нескольких слоев, преобразующий электричество в видимый свет. При изменении его состава получается излучение определенного цвета. Светодиод делается на основе чипа – кристалла с площадкой для подключения проводников питания.

    Чтобы воспроизвести белый свет, “синий” чип покрывается желтым люминофором. При излучении кристалла люминофор испускает собственное. Смешивание желтого и синего света образует белый.

    Разные способы сборки чипов позволяют создавать 4 основных типа светодиодов:

    1. DIP – состоит из кристалла с расположенной сверху линзой и присоединенными двумя проводниками. Он наиболее распространен и используется для подсветки, в световых украшениях и табло.
    2. “Пиранья” – похожая конструкция, но с четырьмя выводами, что делает ее более надежной для монтажа и улучшает отвод выделяющегося тепла. Большей частью применяется в автомобильной промышленности.
    3. SMD-светодиод – размещается на поверхности, за счет чего удается уменьшить габариты, улучшить теплоотвод и обеспечить множество вариантов исполнения. Используется в любых источниках света.
    4. СОВ-технология, где чип впаивается в плату. За счет этого контакт лучше защищен от окисления и перегрева, а также значительно повышается интенсивность свечения. Если светодиод перегорает, его надо полностью менять, поскольку ремонт своими руками с заменой отдельных чипов не возможен.

    Недостатком светодиода является его маленький размер. Чтобы создать большое красочное световое изображение, требуется много источников, объединенных в группы. Кроме того, кристалл со временем стареет, и яркость ламп постепенно падает. У качественных моделей процесс износа протекает очень медленно.

    Устройство LED-лампы

    В состав лампы входят:

    • корпус;
    • цоколь;
    • рассеиватель;
    • радиатор;
    • блок светодиодов LED;
    • бестрансформаторный драйвер.

    Устройство LED-лампы на 220 вольт

    На рисунке изображена современная LED-лампа по технологии СОВ. Светодиод выполнен как одно целое, с множеством кристаллов. Для него не требуется распайка многочисленных контактов. Достаточно присоединить всего одну пару. Когда делается ремонт светильника с перегоревшим светодиодом, его меняют целиком.

    По форме лампы бывают круглыми, цилиндрическими и прочими. Подключение к сети питания производится через резьбовые или штырьковые цоколи.

    Под общее освещение выбираются светильники с цветовой температурой 2700К, 3500К и 5000К. Градации спектра могут быть любыми. Их часто используют для освещения реклам и в декоративных целях.

    Простейшая схема драйвера для питания лампы от сети изображена на рисунке ниже. Количество деталей здесь минимальное, за счет наличия одного или двух гасящих резисторов R1, R2 и встречно-параллельного включения светодиодов HL1, HL2. Так они защищают друг друга от обратного напряжения. При этом частота мерцания лампы увеличивается до 100 Гц.

    Простейшая схема подключения LED-лампы в сеть 220 вольт

    Напряжение питания 220 вольт поступает через ограничительный конденсатор С1 на выпрямительный мост, а после – на лампу. Один из светодиодов можно заменить на обычный выпрямительный, но при этом мерцание изменится до 25 Гц, что плохо повлияет на зрение.

    На рисунке ниже изображена классическая схема источника питания LED-лампы. Он применяется во многих моделях, и его можно извлекать, чтобы производить ремонт своими руками.

    Классическая схема включения LED-лампы в сеть 220 В

    На электролитическом конденсаторе выпрямленное напряжение сглаживается, что устраняет мерцание с частотой 100 Гц. Резистор R1 разряжает конденсатор при отключении питания.

    Ремонт своими руками

    В простой LED-лампе с отдельными светодиодами можно сделать ремонт с заменой неисправных элементов. Она легко разбирается, если аккуратно отделить от стеклянного корпуса цоколь. Внутри располагаются светодиоды. У лампы MR 16 их 27 штук. Для доступа к печатной плате, на которой они размещены, надо удалить защитное стекло, поддев его отверткой. Порой эту операцию сделать довольно трудно.

    Лампа светодиодная на 220 вольт

    Прогоревшие светодиоды сразу заменяются. Остальные следует прозвонить тестером или подать на каждый напряжение 1,5 В. Исправные должны загораться, а остальные подлежат замене.

    Изготовитель рассчитывает лампы так, чтобы рабочий ток светодиодов был как можно выше. Это значительно снижает их ресурс, но “вечные” устройства продавать невыгодно. Поэтому последовательно к светодиодам можно подключить ограничивающий резистор.

    Если светильники моргают, причиной может быть выход из строя конденсатора С1. Его следует заменить на другой, с номинальным напряжением 400 В.

    Изготовить своими руками

    Заново светильники на светодиодах делают редко. Лампу проще изготовить из неисправной. Фактически получается, что ремонт и изготовление нового изделия – это один процесс. Для этого LED-лампу разбирают и восстанавливают перегоревшие светодиоды и радиодетали драйвера. В продаже часто бывают оригинальные светильники с нестандартными лампами, которым в дальнейшем трудно найти замену. Простой драйвер можно взять из неисправной лампы, а светодиоды – из старого фонарика.

    Схема драйвера собирается по классическому образцу, рассмотренному выше. Только к ней добавляется резистор R3 для разрядки конденсатора С2 при отключении и пара стабилитронов VD2,VD3 для его шунтирования на случай обрыва цепи светодиодов. Можно обойтись одним стабилитроном, если правильно подобрать напряжение стабилизации. Если конденсатор выбрать под напряжение больше 220 В, можно обойтись без дополнительных деталей. Но в этом случае его размеры увеличатся и после того, как будет сделан ремонт, плата с деталями может не поместиться в цоколь.

    Драйвер LED-лампы

    Схема драйвера приведена для лампы из 20 светодиодов. Если их количество будет другим, необходимо подобрать такую величину емкости конденсатора С1, чтобы через них проходил ток 20 мА.

    Схема питания LED-лампы является чаще всего бестрансформаторной, и следует соблюдать осторожность при монтаже своими руками на металлическом светильнике, чтобы не было замыкания фазы или нуля на корпус.

    Конденсаторы подбираются по таблице, в зависимости от количества светодиодов. Их можно закрепить на алюминиевой пластине в количестве 20-30 шт. Для этого в ней сверлятся отверстия, и на термоклей устанавливаются светодиоды. Их пайка производится последовательно. Все детали можно разместить на печатной плате из стеклотекстолита. Они располагаются со стороны, где отсутствуют печатные дорожки, за исключением светодиодов. Последние – крепятся пайкой выводов на плате. Их длина составляет около 5 мм. Затем устройство собирается в светильнике.

    Настольная лампа на светодиодах

    Лампа на 220 В. Видео

    Об изготовлении светодиодной лампы на 220 В своими руками можно узнать из этого видео.

    Правильно изготовленная самодельная схема светодиодной лампы позволит эксплуатировать ее многие годы. Для нее бывает возможным ремонт. Источники питания могут быть любые: от обычной батарейки до сети на 220 вольт.

    Конструкция светодиодных индикаторов несколько сложнее. Конечно, при использовании специальной микросхемы управления ее можно упростить до предела, но тут притаилась маленькая неприятность. Большинство таких микросхем развивает на выходе ток не более 10 мА и яркость светодиодов в условиях автомобиля может оказаться недостаточной. Кроме того, наиболее распространены микросхемы с выходами на 5 светодиодов, а это только "программа-минимум". Поэтому для наших условий схема на дискретных элементах предпочтительней, ее можно расширять без особых усилий.

    Простейший индикатор на светодиодах (рис.4) не содержит активных элементов и в питании поэтому не нуждается. Подключение - к магнитоле по схеме "mixed mono" или с разделительным конденсатором, к усилителю - "mixed mono" или напрямую.

    Рис. 4

    Схема предельно проста и не требует налаживания. Единственная процедура - подбор резистора R7. На схеме указан номинал для работы со встроенными усилителями головного устройства. При работе с усилителем мощностью 40...50 Вт сопротивление этого резистора должно быть 270...470 Ом. Диоды VD1...VD7 - любые кремниевые с прямым падением напряжения 0,7...1 В и допустимым током не менее 300 мА.

    Светодиоды любые, но одного типа и цвета свечения с рабочим током 10...15 мА. Поскольку светодиоды "питаются" от выходного каскада усилителя, их количество и рабочий ток увеличить в этой схеме нельзя. Поэтому придется выбрать "яркие" светодиоды или найти для индикатора такое место, где он будет защищен от прямого освещения. Еще один недостаток простейшей конструкции - малый динамический диапазон.

    Для улучшения работы необходим индикатор со схемой управления. Помимо большей свободы в выборе светодиодов можно простыми средствами сформировать шкалу любого типа - от линейной до логарифмической, или "растянуть" только один участок. Схема индикатора с логарифмической шкалой приведена на рис. 5. Пунктиром показаны необязательные элементы.


    Рис. 5

    Светодиоды в этой схеме управляются ключами на транзисторах VT1...VT5. Пороги срабатывания ключей задают диоды VD3...VD9. Подбирая их количество, можно изменять динамический диапазон и тип шкалы. Общую чувствительность индикатора определяют резисторы на входе. На рисунке приведены примерные пороги срабатывания для двух вариантов схемы - с одиночными и "сдвоенными" диодами. В основном варианте диапазон измерения - до 30 Вт на нагрузке 4 Ом, с одиночными диодами - до 18 Вт.

    Светодиод HL1 светится постоянно, он обозначает начало шкалы, HL6 - индикатор перегрузки. Конденсатор C4 задерживает на 0,3...0,5 сек погасание светодиода, что позволяет заметить даже кратковременную перегрузку. Накопительный конденсатор C3 определяет время обратного хода. Оно, кстати, зависит от количества светящихся светодиодов - "столбик" от максимума начинает спадать быстро, а потом "притормаживает". Конденсаторы C1,C2 на входе устройства нужны только при работе со встроенным усилителем магнитолы. При работе с "нормальным" усилителем их исключают. Количество сигналов на входе можно увеличить, добавив цепочки из резистора и диода. Количество ячеек индикации можно увеличить простым "клонированием", главное ограничение - "пороговых" диодов должно быть не больше 10 и между базами соседних транзисторов должен быть хотя бы один диод.

    Светодиоды можно использовать любые в зависимости от требований - от одиночных светодиодов до светодиодных сборок и панелей повышенной яркости. Поэтому на схеме приведены номиналы токоограничивающих резисторов для разных рабочих токов. К остальным деталям никаких специальных требований не предъявляется, транзисторы можно использовать практически любые структуры n-p-n с мощностью рассеяния на коллекторе не менее 150 мВт и двукратным запасом по току коллектора. Коэффициент передачи тока базы этих транзисторов должен быть не менее 50, а лучше - больше 100.

    Эту схему можно несколько упростить, при этом в качестве побочного эффекта появляются новые свойства, весьма полезные для наших целей (рис.6).


    Рис. 6

    В отличие от предыдущей схемы, где транзисторные ячейки были включены параллельно, здесь использовано последовательное включение "столбиком". Пороговыми элементами являются сами транзисторы и открываются они по очереди - "снизу вверх". Но в данном случае порог срабатывания зависит от напряжения питания. На рисунке показаны примерные пороги срабатывания индикатора при напряжении питания 11 В (левая граница прямоугольников) и 15 В (правая граница). Видно, что с ростом напряжения питания больше всего смещается граница индикации максимальной мощности. В случае использования усилителя, мощность которого зависит от напряжения аккумулятора (а таких немало), подобная "автокалибровка" может принести пользу.

    Однако плата за это - возросшая нагрузка на транзисторы. Через нижний по схеме транзистор протекает ток всех светодиодов, поэтому при использовании индикаторов с током более 10 мА транзисторы тоже потребуются соответствующей мощности. "Клонирование" ячеек еще более увеличивает неравномерность шкалы. Поэтому 6-7 ячеек - это предел. Назначение остальных элементов и требования к ним - те же, что и в предыдущей схеме.

    Слегка модернизировав эту схему, получим другие свойства (рис.7). В этой схеме в отличие от ранее рассмотренных, нет светящейся "линейки". В каждый момент времени светится только один светодиод, имитируя движение стрелки по шкале. Поэтому потребление энергии минимально и в этой схеме можно применить маломощные транзисторы. В остальном схема не отличается от рассмотренных ранее.

    Пороговые диоды VD1...VD6 предназначены для надежного отключения неработающих светодиодов, поэтому если будет наблюдаться слабая засветка лишних сегментов, необходимо использовать диоды с большим прямым напряжением или включить последовательно по два диода. "Клонирование" ячеек уменьшает яркость свечения верхних по схеме сегментов, для устранения этого вместо резистора R9 нужно вводить генератор тока. А мы договорились - не усложнять. Поэтому в данном случае 8 ячеек - это максимум.


    Рис. 7

    Список радиоэлементов

    Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
    Индикатор №1
    VD1-VD6 Выпрямительный диод

    1N4007

    6 В блокнот
    HL-HL6 Светодиод Любой 10-15 mA 6 В блокнот
    R1 Резистор

    68 Ом

    1 В блокнот
    R2 Резистор

    33 Ом

    1 В блокнот
    R3 Резистор

    22 Ом

    1 В блокнот
    R4 Резистор

    15 Ом

    1 В блокнот
    R5 Резистор

    12 Ом

    1 В блокнот
    R6 Резистор

    10 Ом

    1 В блокнот
    R7 Резистор 100 - 470 Ом 1 В блокнот
    С1 100 мкФ на 16В 1 В блокнот
    Индикатор №2
    VT1-VT5 Биполярный транзистор

    КТ315В

    5 В блокнот
    VD1-VD9 Диод

    КД522А

    9 КД503, 1N4148 В блокнот
    HL1-HL6 Светодиод До 30 мА 6 В блокнот
    C1-C4 Электролитический конденсатор 10мкФ на 16В 4 В блокнот
    R7-R11 Резистор

    470 Ом

    5 В блокнот
    R12-R13 Резистор

    1 кОм

    2 В блокнот
    Ток светодиода 10 мА
    R1-R6 Резистор

    1 кОм - 1.2 кОм

    6 В блокнот
    Ток светодиода 20 мА
    R1-R6 Резистор

    470 Ом - 680 Ом

    6 В блокнот
    Ток светодиода 30 мА
    R1-R6 Резистор

    330 Ом - 390 Ом

    6 В блокнот
    Индикатор №3
    VT1-VT6 Биполярный транзистор

    КТ503А

    6 В блокнот
    VD1-VD2 Диод

    КД522А

    2 1N4148 В блокнот
    HL1-HL7 Светодиод до 30 мА 7 В блокнот
    C1-C4 Электролитический конденсатор 10 мкФ на 16В 4 В блокнот
    R1-R6 Резистор

    1 кОм

    6 В блокнот
    R14-R15 Резистор

    1 кОм

    2 В блокнот
    Ток светодиода 10 мА
    R7-R13 Резистор

    1 кОм - 1.2 кОм

    7 В блокнот
    Ток светодиода 20 мА
    R7-R13 Резистор

    470 Ом - 680 Ом

    7 В блокнот
    Ток светодиода 30 мА
    R7-R13 Резистор

    Времена, когда светодиоды использовали только в качестве индикаторов включения приборов, давно прошли. Современные светодиодные приборы могут полностью взаимозаменить лампы накаливания в бытовых, промышленных и . Этому способствуют различные характеристики светодиодов, зная которые можно правильно подобрать LED-аналог. Использование светодиодов, учитывая их основные параметры, открывает обилие возможностей в сфере освещения.

    Светодиод (обозначается СД, СИД, LED в англ.) представляет собой прибор, в основе которого лежит искусственный полупроводниковый кристаллик. При пропускании через него электротока создается явление испускания фотонов, что приводит к свечению. Данное свечение имеет очень узкий диапазон спектра, и цвет его находится в зависимости от материала полупроводника.

    Светодиоды с красным и желтым свечением производят из неорганических полупроводниковых материалов на базе арсенида галлия, зеленые и синие изготавливают на основе индия-галлия-нитрида. Чтобы увеличить яркость светового потока используют различные присадки или применяют метод многослойности, когда слой чистого нитрида алюминия размещают между полупроводниками. В результате образования в одном кристаллике нескольких электронно-дырочных (p-n) переходов, яркость его свечения возрастает.

    Различают два типа светодиодов: для индикации и освещения. Первые используют для индикации включения в сеть различных приборов, а также как источники декоративной подсветки. Они представляют собой цветные диоды, помещенные в просвечивающийся корпус, каждый из них имеет четыре вывода. Приборы, излучающие инфракрасный свет, используют в устройствах для удаленного управления приборами (пульт ДУ).

    В области освещения используют светодиоды, излучающие белый свет. По цвету различают светодиоды с холодным белым, нейтральным белым и теплым белым свечением. Существует классификация применяемых для освещения светодиодов по способу монтажа. Маркировка светодиода SMD означает, что прибор состоит из алюминиевой или медной подложки, на которой размещен кристаллик диода. Сама подложка располагается в корпусе, контакты которого соединены с контактами светодиода.

    Другой тип светодиодов обозначается OCB. В таком приборе на одной плате размещается множество кристаллов, покрытых люминофором. Благодаря такой конструкции достигается большая яркость свечения. Такую технологию используют при производстве с большим световым потоком на относительно малой площади. В свою очередь это делает производство светодиодных ламп наиболее доступным и недорогим.

    Обратите внимание! Сравнивая лампы на SMD и COB светодиодах можно отметить, что первые поддаются ремонту путем замены вышедшего из строя светодиода. Если не работает лампа на COB светодиодах, придется менять всю плату с диодами.

    Характеристики светодиодов

    Выбирая для освещения подходящую светодиодную лампу, следует учитывать параметры светодиодов. К ним относят напряжение питания, мощность, рабочий ток, эффективность (светоотдача), температуру свечения (цвет), угол излучения, размеры, срок деградации. Зная основные параметры, можно будет без труда выбрать приборы для получения того или иного результата освещенности.

    Величина тока потребления светодиода

    Как правило, для обычных светодиодов предусмотрена сила тока величиной 0,02А. Однако бывают светодиоды, рассчитанные на 0,08А. К таким светодиодам относят более мощные приборы, в устройстве которых задействованы четыре кристалла. Они располагаются в одном корпусе. Так как каждый из кристаллов потребляет по 0,02А, в сумме один прибор будет потреблять 0,08А.

    Стабильность работы светодиодных приборов зависит от величины тока. Даже незначительное увеличение силы тока способствует снижению интенсивности излучения (старению) кристалла и увеличению цветовой температуры. Это в конечном результате приводит к тому, что светодиоды начинают отливать синим цветом и преждевременно выходят из строя. А если показатель силы тока увеличивается существенно, светодиод сразу перегорает.

    Чтобы ограничить потребляемый ток, в конструкциях LED-ламп и светильников предусмотрены стабилизаторы тока для светодиодов (драйверы). Они преобразуют ток, доводя его до нужной светодиодам величины. В случае, когда требуется подключить отдельный светодиод к сети, нужно использовать токоограничительные резисторы. Расчет сопротивления резистора для светодиода выполняют с учетом его конкретных характеристик.

    Полезный совет! Чтобы правильно подобрать резистор, можно воспользоваться калькулятором расчета резистора для светодиода, размещенным в сети интернет.

    Напряжение светодиодов

    Как узнать напряжение светодиодов? Дело в том, что параметра напряжения питания как такового у светодиодов нет. Вместо этого используется характеристика падения напряжения на светодиоде, что означает величину напряжения на выходе светодиода при прохождении через него номинального тока. Значение напряжения, указанное на упаковке, отражает как раз падение напряжения. Зная эту величину, можно определить оставшееся на кристалле напряжение. Именно это значение берется во внимание при расчетах.

    Учитывая применение различных полупроводников для светодиодов, напряжение у каждого из них может быть разным. Как узнать, на сколько Вольт светодиод? Определить можно по цвету свечения приборов. Например, для синих, зеленых и белых кристаллов напряжение составляет около 3В, для желтых и красных – от 1,8 до 2,4В.

    При использовании параллельного подключения светодиодов идентичного номинала с величиной напряжения в 2В можно столкнуться со следующим: в результате разброса параметров одни излучающие диоды выйдут из строя (сгорят), а другие будут очень слабо светиться. Это произойдет ввиду того, что при увеличении напряжения даже на 0,1В наблюдается увеличение силы тока, проходящего через светодиод, в 1,5 раза. Поэтому так важно следить, чтобы ток соответствовал номиналу светодиода.

    Светоотдача, угол свечения и мощность светодиодов

    Сравнение светового потока диодов с другими источниками света проводят, учитывая силу издаваемого ими излучения. Приборы размером около 5 мм в диаметре дают от 1 до 5 лм света. В то время как световой поток лампы накаливания в 100Вт составляет 1000 лм. Но при сопоставлении необходимо учитывать, что у обычной лампы свет рассеянный, а у светодиода – направленный. Поэтому необходимо принимать во внимание угол рассеивания светодиодов.

    Угол рассеивания разных светодиодов может составлять от 20 до 120 градусов. При освещении светодиоды дают более яркий свет по центру и снижают освещенность к краям угла рассеивания. Таким образом, светодиоды лучше освещают конкретное пространство, используя при этом меньше мощности. Однако если требуется увеличить площадь освещенности, в конструкции светильника используют рассеивающие линзы.

    Как определить мощность светодиодов? Чтобы определить мощность светодиодной лампы, требующейся для замены лампы накаливания, необходимо применять коэффициент, равный 8. Так, заменить обычную лампу мощностью 100Вт можно светодиодным прибором мощностью не менее 12,5Вт (100Вт/8). Для удобства можно воспользоваться данными таблицы соответствия мощности ламп накаливания и LED-источников света:

    Мощность лампы накаливания, Вт Соответствующая мощность светодиодного светильника, Вт
    100 12-12,5
    75 10
    60 7,5-8
    40 5
    25 3

    При использовании светодиодов для освещения очень важен показатель эффективности, который определяется отношением светового потока (лм) к мощности (Вт). Сопоставляя эти параметры у разных источников света, получаем, что эффективность лампы накаливания составляет 10-12 лм/Вт, люминесцентной – 35-40 лм/Вт, светодиодной – 130-140 лм/Вт.

    Цветовая температура LED-источников

    Одним из важных параметров светодиодных источников является температура свечения. Единицы измерения этой величины – градусы Кельвина (К). Следует отметить, что все источники света по температуре свечения разделяют на три класса, среди которых теплый белый имеет цветовую температуру менее 3300 К, дневной белый – от 3300 до 5300 К и холодный белый свыше 5300 К.

    Обратите внимание! Комфортное восприятие человеческим глазом светодиодного излучения непосредственно зависит от цветовой температуры LED-источника.

    Цветовая температура обычно указывается на маркировке светодиодных ламп. Она обозначается четырехзначным числом и буквой К. Выбор LED-ламп с определенной цветовой температурой напрямую зависит от особенностей применения ее для освещения. Предложенная ниже таблица отображает варианты использования светодиодных источников с разной температурой свечения:

    Цвет свечения светодиодов Цветовая температура, К Варианты использования в освещении
    Белый Теплый 2700-3500 Освещение бытовых и офисных помещений как наиболее подходящий аналог лампы накаливания
    Нейтральный (дневной) 3500-5300 Отличная цветопередача таких ламп позволяет применять их для освещения рабочих мест на производстве
    Холодный свыше 5300 Используется в основном для освещения улиц, а также применяется в устройстве ручных фонарей
    Красный 1800 Как источник декоративной и фито-подсветки
    Зеленый -
    Желтый 3300 Световое оформление интерьеров
    Синий 7500 Подсветка поверхностей в интерьере, фито-подсветка

    Волновая природа цвета позволяет выразить цветовую температуру светодиодов, используя длину волны. Маркировка некоторых светодиодных приборов отражает цветовую температуру именно в виде интервала различных длин волн. Длина волны имеет обозначение λ и измеряется в нанометрах (нм).

    Типоразмеры SMD светодиодов и их характеристики

    Учитывая размер SMD светодиодов, приборы классифицируются в группы с различными характеристиками. Наиболее популярные светодиоды с типоразмерами 3528, 5050, 5730, 2835, 3014 и 5630. Характеристики SMD светодиодов в зависимости от размеров рознятся. Так, разные типы SMD светодиодов отличаются по яркости, цветовой температуре, мощности. В маркировке светодиодов первые две цифры показывают длину и ширину прибора.

    Основные параметры светодиодов SMD 2835

    К основным характеристикам SMD светодиодов 2835 относят увеличенную площадь излучения. В сравнении с прибором SMD 3528, который имеет круглую рабочую поверхность, площадь излучения SMD 2835 имеет прямоугольную форму, что способствует большей светоотдаче при меньшей высоте элемента (около 0,8 мм). Световой поток такого прибора составляет 50 лм.

    Корпус светодиодов SMD 2835 выполнен из термостойкого полимера и может выдерживать температуру до 240°С. Следует отметить, что деградация излучения в этих элементах составляет менее 5% в течение 3000 часов функционирования. Кроме того, прибор имеет достаточно низкое тепловое сопротивление перехода кристалл-подложка (4 С/Вт). Рабочий ток в максимальном значении – 0,18А, температура кристалла – 130°С.

    По цвету свечения выделяют теплый белый с температурой свечения 4000 К, дневной белый – 4800 К, чистый белый – от 5000 до 5800 К и холодный белый с цветовой температурой 6500-7500 К. Стоит отметить, что максимальная величина светового потока у приборов с холодным белым свечением, минимальная – у светодиодов теплого белого цвета. В конструкции прибора увеличены контактные площадки, что способствует лучшему отводу тепла.

    Полезный совет! Светодиоды SMD 2835 могут быть использованы для любого типа монтажа.

    Характеристики светодиодов SMD 5050

    В конструкции корпуса SMD 5050 размещены три однотипных светодиода. LED источники синего, красного и зеленого цвета имеют технические характеристики, аналогичные кристаллам SMD 3528. Значение рабочего тока каждого из трех светодиодов составляет 0,02А, следовательно суммарная величина тока всего прибора 0,06А. Для того, чтобы светодиоды не вышли из строя, рекомендуется не превышать эту величину.

    LED приборы SMD 5050 имеют прямое напряжение величиной 3-3,3В и светоотдачу (сетевой поток) 18-21 лм. Мощность одного светодиода складывается из трех величин мощности каждого кристалла (0,7Вт) и составляет 0,21Вт. Цвет свечения, испускаемый приборами, может быть белым во всех оттенках, зеленым, синим, желтым и многоцветным.

    Близкое расположение светодиодов разных цветов в одном корпусе SMD 5050 позволило реализовать многоцветные светодиоды с отдельным управлением каждым цветом. Для регулирования светильников с использованием светодиодов SMD 5050 используют контроллеры, благодаря чему цвет свечения можно плавно изменять от одного к другому через заданное количество времени. Обычно такие приборы имеют несколько режимов управления и могут регулировать яркость свечения светодиодов.

    Типовые характеристики светодиода SMD 5730

    Светодиоды SMD 5730 – современные представители LED-приборов, корпус которых имеет геометрические размеры 5,7х3 мм. Они относятся к сверхярким светодиодам, характеристики которых стабильны и качественно отличаются от параметров предшественников. Изготовленные с применением новых материалов, эти светодиоды отличаются повышенной мощностью и высокоэффективным световым потоком. Кроме того, они могут работать в условиях повышенной влажности, устойчивы к перепадам температур и вибрации, имеют длительный срок службы.

    Существует две разновидности приборов: SMD 5730-0,5 с мощностью 0,5Вт и SMD 5730-1 с мощностью 1Вт. Отличительной особенностью приборов является возможность их функционирования на импульсном токе. Величина номинального тока SMD 5730-0,5 составляет 0,15А, при импульсной работе прибор может выдерживать силу тока до 0,18А. Данный тип светодиодов обеспечивает световой поток до 45 лм.

    Светодиоды SMD 5730-1 работают на постоянном токе 0,35А, при импульсном режиме – до 0,8А. Эффективность светоотдачи такого прибора может составить до 110 лм. Благодаря термостойкому полимеру, корпус прибора выдерживает температуру до 250°С. Угол рассеивания обоих типов SMD 5730 равен 120 градусам. Степень деградации светового потока составляет менее 1% при работе в течение 3000 часов.

    Характеристики светодиодов Cree

    Компания Cree (США) занимается разработкой и выпуском сверхъярких и самых мощных светодиодов. Одна из групп светодиодов Cree представлена серией приборов Xlamp, которые делятся на однокристальные и многокристальные. Одной из особенностей однокристальных источников является распределение излучения по краям прибора. Это инновация позволила выпускать светильники с большим углом свечения, используя минимальное количество кристаллов.

    В серии LED-источников XQ-E High Intensity угол свечения составляет от 100 до 145 градусов. Имея небольшие геометрические размеры 1,6х1,6 мм, мощность сверхярких светодиодов – 3 Вольта, а световой поток – 330 лм. Это одна из новейших разработок компании Cree. Все светодиоды, конструкция которых разработана на базе одного кристалла, имеют качественную цветопередачу в пределах CRE 70-90.

    Статья по теме:

    Как сделать или починить LED-гирлянду самостоятельно. Цены и основные характеристики наиболее популярных моделей.

    Компания Cree выпустила несколько вариантов многокристальных LED-приборов с новейшими типами питания от 6 до 72 Вольт. Многокристальные светодиоды делятся на три группы, в которые входят приборы с высоким напряжением, мощностью до 4Вт и выше 4Вт. В источниках до 4Вт собраны 6 кристаллов в корпусе типа MX и ML. Угол рассеивания составляет 120 градусов. Купить светодиоды Cree такого типа можно с белым теплым и холодным цветом свечения.

    Полезный совет! Несмотря на высокую надежность и качество света, купить мощные светодиоды серии MX и ML можно по относительно небольшой цене.

    В группу свыше 4Вт входят светодиоды из нескольких кристаллов. Самыми габаритными в группе являются приборы мощностью 25Вт, представленные серией MT-G. Новинка компании – светодиоды модели XHP. Один из крупных LED-приборов имеет корпус 7х7 мм, его мощность 12Вт, светоотдача 1710 лм. Светодиоды с высоким напряжением питания объединяют в себе небольшие габариты и высокую светоотдачу.

    Схемы подключения светодиодов

    Существуют определенные правила подключения светодиодов. Беря во внимание, что проходящий через прибор ток движется только в одном направлении, для длительного и стабильного функционирования LED-приборов важно учитывать не только определенное напряжение, но и оптимальную величину тока.

    Схема подключения светодиода к сети 220В

    В зависимости от используемого источника питания, различают два вида схем подключения светодиодов к 220В. В одном из случаев используется с ограниченным током, во втором – специальный , стабилизирующий напряжение. Первый вариант учитывает использование специального источника с определенной силой тока. Резистор в данной схеме не требуется, а количество подключаемых светодиодов ограничивается мощностью драйвера.

    Для обозначения светодиодов на схеме используются пиктограммы двух видов. Над каждым схематическим их изображением находятся две небольшие параллельные стрелочки, направленные вверх. Они символизируют яркое свечение LED-прибора. Перед тем как подключить светодиод к 220В используя блок питания, необходимо в схему включить резистор. Если это условие не выполнить, это приведет к тому, что рабочий ресурс светодиода существенно сократится или он попросту выйдет из строя.

    Если при подключении использовать блок питания, то стабильным в схеме будет лишь напряжение. Учитывая незначительное внутреннее сопротивление LED-прибора, включение его без ограничителя тока приведет к сгоранию прибора. Именно поэтому в схему включения светодиода вводят соответствующий резистор. Следует отметить, что резисторы бывают с разным номиналом, поэтому их следует правильно рассчитывать.

    Полезный совет! Негативным моментом схем включения светодиода в сеть 220 Вольт с использованием резистора становится рассеивание большой мощности, когда требуется подключить нагрузку с повышенным потреблением тока. В этом случае резистор заменяют гасящим конденсатором.

    Как рассчитать сопротивление для светодиода

    При расчете сопротивления для светодиода руководствуются формулой:

    U = IхR ,

    где U – напряжение, I – сила тока, R – сопротивление (закон Ома). Допустим, необходимо подключить светодиод с такими параметрами: 3В – напряжение и 0,02А – сила тока. Чтобы при подключении светодиода к 5 Вольтам на блоке питания он не вышел из строя, надо убрать лишние 2В (5-3 = 2В). Для этого необходимо включить в схему резистор с определенным сопротивлением, которое рассчитывается с помощью закона Ома:

    R = U/I .

    Таким образом, отношение 2В к 0,02А составит 100 Ом, т.е. именно такой необходим резистор.

    Очень часто бывает, что учитывая параметры светодиодов, сопротивление резистора имеет нестандартное для прибора значение. Такие ограничители тока нельзя отыскать в точках продажи, например, 128 или 112,8 Ом. Тогда следует использовать резисторы, сопротивление которых имеет ближайшее большее значение по сравнению с расчетным. При этом светодиоды будут функционировать не в полную силу, а лишь на 90-97%, но это будет незаметно для глаза и положительно отразится на ресурсе прибора.

    В интернете представлено множество вариантов калькуляторов расчетов светодиодов. Они учитывают основные параметры: падение напряжения, номинальный ток, напряжение на выходе, количество приборов в цепи. Задав в поле формы параметры LED-приборов и источников тока, можно узнать соответствующие характеристики резисторов. Для определения сопротивления маркированных цветом токоограничителей также существуют онлайн расчеты резисторов для светодиодов.

    Схемы параллельного и последовательного подключения светодиодов

    При сборке конструкций из нескольких LED-приборов используют схемы включения светодиодов в сеть 220 Вольт с последовательным или параллельным соединением. При этом для корректного подключения следует учитывать, что при последовательном включении светодиодов требуемое напряжение представляет собой сумму падений напряжений каждого прибора. В то время как при параллельном включении светодиодов складывается сила тока.

    Если в схемах используются LED-приборы с разными параметрами, то для стабильной работы необходимо рассчитать резистор для каждого светодиода отдельно. Следует отметить, что двух совершенно одинаковых светодиодов не существует. Даже приборы одной модели имеют незначительные отличия в параметрах. Это приводит к тому, что при подключении большого их количества в последовательную или параллельную схему с одним резистором, они могут быстро деградировать и выйти из строя.

    Обратите внимание! При использовании одного резистора в параллельной или последовательной схеме можно подключать лишь LED-приборы с идентичными характеристиками.

    Расхождение в параметрах при параллельном подключении нескольких светодиодов, допустим 4-5 шт., не повлияет на работу приборов. А если в такую схему подключить много светодиодов – это будет плохим решением. Даже если LED-источники имеют незначительный разброс характеристик, это приведет к тому, что некоторые приборы будут излучать яркий свет и быстро сгорят, а другие – будут слабо светиться. Поэтому при параллельном подключении следует всегда использовать отдельный резистор для каждого прибора.

    Что касается последовательного соединения, то здесь имеет место экономное потребление, так как вся цепь расходует количество тока, равное потреблению одного светодиода. При параллельной схеме, потребление составляет сумму расходования всех включенных в схему LED-источников, включенных в схему.

    Как подключить светодиоды к 12 Вольтам

    В конструкции некоторых приборов резисторы предусмотрены еще на этапе изготовления, что дает возможность подключения светодиодов к 12 Вольт или 5 Вольт. Однако такие приборы не всегда можно найти в продаже. Поэтому в схеме подключения светодиодов к 12 вольт предусматривают ограничитель тока. Первым делом необходимо выяснить характеристики подключаемых светодиодов.

    Такой параметр, как прямое падение напряжения у типовых LED-приборов составляет около 2В. Номинальный ток у этих светодиодов соответствует 0,02А. Если требуется подключить такой светодиод к 12В, то «лишние» 10В (12 минус 2) необходимо погасить ограничительным резистором. С помощью закона Ома можно рассчитать для него сопротивление. Получим, что 10/0,02 = 500 (Ом). Таким образом, необходим резистор с номиналом 510 Ом, который является ближайшим по ряду электронных компонентов Е24.

    Чтобы такая схема работала стабильно, требуется еще вычислить мощность ограничителя. Используя формулу, исходя из которой мощность равна произведению напряжения и тока, рассчитываем ее значение. Напряжение величиной 10В умножаем на ток 0,02А и получаем 0,2Вт. Таким образом, необходим резистор, стандартный номинал мощности которого составляет 0,25Вт.

    Если в схему необходимо включить два LED-прибора, то следует учитывать, что напряжение падающее на них, будет составлять уже 4В. Соответственно для резистора останется погасить уже не 10В, а 8В. Следовательно, дальнейший расчет сопротивления и мощности резистора делается на основании этого значения. Расположение резистора в схеме можно предусмотреть в любом месте: со стороны анода, катода, между светодиодами.

    Как проверить светодиод мультиметром

    Один из способов проверки рабочего состояния светодиодов – тестирование мультиметром. Таким прибором можно диагностировать светодиоды любого исполнения. Перед тем как проверить светодиод тестером, переключатель прибора устанавливают в режиме «прозвонки», а щупы прикладывают к выводам. При замыкании красного щупа на анод, а черного на катод, кристалл должен излучать свет. Если поменять полярность, на дисплее прибора должна отображаться показание «1».

    Полезный совет! Перед тем как проверить светодиод на работоспособность, рекомендуется приглушить основное освещение, так как при тестировании ток очень низкий и светодиод будет излучать свет так слабо, что при нормальном освещении этого можно не заметить.

    Тестирование LED-приборов можно произвести, не используя щупы. Для этого в отверстия, расположенные в нижнем углу прибора, анод вставляют в отверстие с символом «Е», а катод – с указателем «С». Если светодиод в рабочем состоянии – он должен засветиться. Этот метод тестирования подходит для светодиодов с достаточно длинными контактами, очищенными от припоя. Положение переключателя при таком способе проверки не имеет значения.

    Как проверить светодиоды мультиметром, не выпаивая? Для этого необходимо припаять к щупам тестера кусочки от обычной скрепки. В качестве изоляции подойдет текстолитовая прокладка, которая укладывается между проводами, после чего обрабатывается изолентой. На выходе получается своеобразный переходник для подключения щупов. Скрепки хорошо пружинят и надежно фиксируются в разъемах. В таком виде можно подключить щупы к светодиодам, не выпаивая их из схемы.

    Что можно сделать из светодиодов своими руками

    Многие радиолюбители практикуют сборку различных конструкций из светодиодов своими руками. Собранные самостоятельно изделия не уступают по качеству, а иногда и превосходят аналоги производственного изготовления. Это могут быть цветомузыкальные устройства, мигающие конструкции светодиодов, бегущие огни на светодиодах своими руками и многое другое.

    Сборка стабилизатора тока для светодиодов своими руками

    Чтобы ресурс светодиода не выработался раньше положенного срока, необходимо чтобы ток, протекающий через него, имел стабильное значение. Известно, что светодиоды красного, желтого и зеленого цвета могут справляться с повышенной нагрузкой по току. В то время как сине-зеленые и белые LED-источники даже при небольшой перегрузке сгорают за 2 часа. Таким образом, для нормальной работы светодиода необходимо решить вопрос с его питанием.

    Если собрать цепочку из последовательно или параллельно соединенных светодиодов, то обеспечить им идентичное излучение можно в том случае, если ток, проходящий через них, будет иметь одинаковую силу. Кроме того, импульсы обратного тока могут негативно повлиять на ресурс LED-источников. Чтобы такого не произошло, необходимо включить в схему стабилизатор тока для светодиодов.

    Качественные признаки светодиодных светильников зависят от применяемого драйвера – устройства, которое преобразует напряжение в стабилизированный ток с конкретным значением. Многие радиолюбители собирают схему питания светодиодов от 220В своими руками на базе микросхемы LM317. Элементы для такой электронной схемы имеют небольшую стоимость и такой стабилизатор легко сконструировать.

    При использовании стабилизатора тока на LM317 для светодиодов регулируют ток в пределах 1А. Выпрямитель на базе LM317L стабилизирует ток до 0,1А. В схеме устройства используют всего лишь один резистор. Его рассчитывают посредством онлайн калькулятора сопротивления для светодиода. Для питания подойдут имеющиеся подручные устройства: блоки питания от принтера, ноутбука или другой бытовой электроники. Более сложные схемы собирать самостоятельно не выгодно, так как их проще приобрести в готовом виде.

    ДХО из светодиодов своими руками

    Применение на автомобилях дневных ходовых огней (ДХО) заметно повышает видимость автомобиля в светлое время другими участниками дорожного движения. Многие автолюбители практикуют самостоятельную сборку ДХО с использованием светодиодов. Один из вариантов – устройство ДХО из 5-7 светодиодов мощностью 1Вт и 3Вт на каждый блок. Если использовать менее мощные LED-источники, световой поток не будет соответствовать нормативам для таких огней.

    Полезный совет! При изготовлении ДХО своими руками, учитывайте требования ГОСТа: световой поток 400-800 Кд, угол свечения в горизонтальной плоскости – 55 градусов, в вертикальной – 25 градусов, площадь – 40 см².

    Для основания можно использовать плату из алюминиевого профиля с площадками для крепления светодиодов. Светодиоды фиксируются на плате с помощью теплопроводного клеящего состава. В соответствии с типом LED-источников подбирается оптика. В данном случае подойдут линзы с углом свечения 35 градусов. Линзы устанавливаются на каждый светодиод отдельно. Провода выводятся в любую удобную сторону.

    Далее изготавливается корпус для ДХО, служащий одновременно и радиатором. Для этого можно использовать П-образный профиль. Готовый светодиодный модуль располагают внутри профиля, закрепив его на винтах. Все свободное пространство можно залить прозрачным герметиком на силиконовой основе, оставив на поверхности только линзы. Такое покрытие будет служить в качестве влагозащиты.

    Подключение ДХО к питанию производится с обязательным использованием резистора, сопротивление которого предварительно просчитывается и проверяется. Способы подключения могут быть разными, учитывая модель автомобиля. Схемы подключения можно отыскать в сети интернет.

    Как сделать, чтобы светодиоды мигали

    Наиболее популярными мигающими светодиодами, купить которые можно в готовом виде, являются приборы, регулируемые уровнем потенциала. Мигание кристалла происходит за счет изменения питания на выводах прибора. Так, двухцветный красно-зеленый LED-прибор излучает свет в зависимости от направления проходящего по нему тока. Эффект мигания в RGB-светодиоде достигается подключением трех выводов для отдельного управления к конкретной системе регулирования.

    Но можно сделать мигающим и обычный одноцветный светодиод, имея в арсенале минимум электронных компонентов. Перед тем как сделать мигающий светодиод, необходимо выбрать работающую схему, которая будет простой и надежной. Можно использовать схему мигающего светодиода, которая будет запитана от источника с напряжением 12В.

    Схема состоит из транзистора небольшой мощности Q1 (подойдет кремниевый высокочастотный КТЗ 315 или его аналоги), резистора R1 820-1000 Ом, 16-вольтового конденсатора С1 емкостью 470 мкФ и LED-источника. При включении схемы конденсатор заряжается до 9-10В, после этого транзистор на миг открывается и отдает накопленную энергию светодиоду, который начинает мигать. Данную схему можно реализовать только в случае питания от источника 12В.

    Можно собрать более усовершенствованную схему, которая работает по аналогии с транзисторным мультивибратором. В схему входят транзисторы КТЗ 102 (2 шт.), резисторы R1 и R4 по 300 Ом каждый, чтобы ограничить ток, резисторы R2 и R3 по 27000 Ом, чтобы задавать ток базы транзисторов, 16-вольтовые полярные конденсаторы (2 шт. емкостью 10 мкФ) и два LED-источника. Данная схема питается от источника постоянного напряжения 5В.

    Схема работает по принципу «пары Дарлингтона»: конденсаторы С1 и С2 попеременно заряжаются и разряжаются, что служит причиной открывания конкретного транзистора. Когда один транзистор отдает энергию С1, загорается один светодиод. Далее плавно заряжается С2, а ток базы VT1 снижается, что приводит к закрытию VT1 и открытию VT2 и загорается другой светодиод.

    Полезный совет! Если использовать напряжение питания свыше 5В, потребуется применить резисторы с другим номиналом, чтобы исключить выход из строя светодиодов.

    Сборка цветомузыки на светодиодах своими руками

    Чтобы реализовать достаточно сложные схемы цветомузыки на светодиодах своими руками, необходимо сначала разобраться, как работает простейшая схема цветомузыки. Она состоит из одного транзистора, резистора и LED-прибора. Такую схему можно запитать от источника с номиналом от 6 до 12В. Функционирование схемы происходит за счет каскадного усиления с общим излучателем (эмиттером).

    На базу VT1 поступает сигнал с изменяющейся амплитудой и частотой. В том случае, когда колебания сигнала превышают заданный порог, транзистор открывается и загорается светодиод. Минусом данной схемы является зависимость мигания от степени звукового сигнала. Таким образом эффект цветомузыки будет проявляться только при определенной степени громкости звука. Если звук увеличить. светодиод будет все время гореть, а при уменьшении – чуть вспыхивать.

    Чтобы добиться полноценного эффекта, используют схему цветомузыки на светодиодах с разбивкой диапазона звука на три части. Схема с трехканальным преобразователем звука питается от источника напряжением 9В. Огромное количество схем цветомузыки можно найти в интернете на различных форумах радиолюбителей. Это могут быть схемы цветомузыки с использованием одноцветной ленты, RGB-светодиодной ленты, а также схемы плавного включения и выключения светодиодов. Так же в сети можно отыскать схемы бегущих огней на светодиодах.

    Конструкция индикатора напряжения на светодиодах своими руками

    Схема индикатора напряжения включает резистор R1 (переменное сопротивление 10 кОм), резисторы R1, R2 (1кОм), два транзистора VT1 КТ315Б, VT2 КТ361Б, три светодиода – HL1, HL2 (красные), HLЗ (зеленый). X1, X2 – 6-вольтовые источники питания. В данной схеме рекомендуется использовать LED-приборы с напряжением 1,5В.

    Алгоритм работы самодельного светодиодного индикатора напряжения представляет собой следующее: когда подается напряжение, светится центральный LED-источник зеленого цвета. В случае падения напряжения, включается светодиод красного цвета, расположенный слева. Увеличение напряжения заставляет светиться красный светодиод, размещенный справа. При среднем положении резистора все транзисторы будут в закрытом положении, и напряжение поступит лишь на центральный зеленый светодиод.

    Открытие транзистора VT1 происходит, когда ползунок резистора передвигают вверх, тем самым повышая напряжение. В этом случае поступление напряжения на HL3 прекращается, и оно подается на HL1. При перемещении ползунка вниз (понижение напряжение) происходит закрытие транзистора VT1 и открытие VT2, что даст питание светодиоду HL2. С незначительной задержкой LED HL1 погаснет, HL3 один раз мелькнет и засветится HL2.

    Такую схему можно собрать, используя радиодетали от устаревшей техники. Некоторые собирают ее на текстолитовой плате, соблюдая масштаб 1:1 c размерами деталей, чтобы все элементы могли разместиться на плате.

    Безграничный потенциал LED-освещения дает возможность самостоятельно конструировать из светодиодов различные светотехнические приборы с отличными характеристиками и достаточно низкой стоимостью.

    Светодиоды или СВЕТО излучающие ДИОДЫ (в английском варианте LED - Light Emitting Diode) хорошо известны каждому электронщику. Это полупроводниковые приборы, преобразующие электрический ток в световое излучение. Их основные достоинства: высокий КПД, близкое к монохромному излучение, миниатюрность, механическая прочность, высокая надёжность, малое тепловыделение, до 10 лет наработки без выключения питания. Наконец, светодиоды являются низковольтными приборами, а стало быть, максимально электробезопасными.

    Первые промышленные образцы светодиодов красного цвета появились в 1962 г. (фирма General Electric Corp.). В 1976 г. были разработаны светодиоды оранжевого, зелёного и жёлтого цвета свечения, а в 1993 г. появились первые полупроводниковые излучатели синего цвета (фирма Nichia Corporation). В любительских конструкциях чаще всего применяют «красные» и «зелёные» светодиоды, реже - «синие» и «белые».

    Характерные значения КПД у стандартных светодиодов - от 1 до 10%. Для сравнения, КПД парового двигателя составляет 5…7%. У мощных современных светодиодов этот показатель достигает 12…35%.

    В Табл. 2.1 приведены параметры маломощных светодиодов с силой света не более 1000 МК д. Их особенностью является значительный технологический разброс вольт-амперной характеристики (ВАХ). Как следствие, для конкретного светодиода прямой ток / ПР и прямое напряжение V np известны лишь ориентировочно. При расчётах на это обычно закрывают глаза, поскольку в большинстве случаев от светодиода требуется констатация факта «включен» или «выключен».

    Таблица 2.1. Параметры маломощных светодиодов общего применения

    Условные напряжения 1.6; 1.7; 1.8; 3.5 В характеризуют начальную точку подъёма кривой ВАХ, соответственно, у «красного», «жёлтого», «зелёного» и «синего»/«белого» индикаторов. Именно эти цифры в дальнейшем будут указываться в электрических схемах возле обозначения светодиодов. Однако реальное рабочее напряжение У пр примерно на 0.1…0.4 В больше начального, что зависит от протекающего тока (Рис. 2.1).

    Рис. 2.1. Типовые ВАХ маломощных светодиодов фирмы Kingbright.

    Важные замечания.

    1. Не следует устанавливать постоянный прямой ток / ПР через светодиод, близкий к максимальному пределу, указанному в даташите. Обычно это 20 мА. Длительная работа с таким током снижает долговременную надёжность. Для получения приемлемой яркости свечения достаточно задать ток 4…10 мА.

    2. Светодиоды допускают импульсный режим работы, при котором прямой ток / ПР можно увеличить в 3…6 раз до 60…120 мА с сохранением среднего тока за период не более 20…25 мА. При расчётах надо не забывать, что с повышением тока возрастает и напряжение. Например, для «зелёного» светодиода при токе 15 мА напряжение У ПР = 2.1 В, а при токе 75 мА V np = 2.7 В.

    3. Красный цвет индикации не гарантирует того, что светодиод относится к группе с условным началом кривой ВАХ 1.6 В (хотя в большинстве случаев именно так оно и есть). «Красный» светодиод может иметь «зелёную» ВАХ с точкой подъёма 1.8 В. Всё зависит от химического состава, из которого изготавливается излучатель, а этот параметр при покупке на радиорынке априори неизвестен. Аналогичная ситуация и с мощными «зелёными» светодиодами, которые могут иметь «синюю» ВАХ с точкой подъёма 3.5 В.

    4. В некоторых даташитах на светодиоды указывается максимально допустимое обратное напряжение У ОБР = 2…5 В. Но это всего лишь тестовое напряжение, при котором на заводе-изготовителе проверяется обратный ток утечки, равный нескольким десяткам микроампер.

    5. Светодиод выходит из строя не от высокого обратного напряжения, а от превышения рассеиваемой на нём мощности. В исследованиях показано, что светодиоды зелёного и красного цвета имеют «стабилитронную» ВАХ с достаточно крутым изгибом. При обратном напряжении 12…35 В происходит обратимый пробой n-p-перехода. Если ток при пробое не превышает 2…4 мА, то мощность рассеяния остаётся в регламентируемых даташитом рамках 75…150 мВт.

    Практический вывод - при напряжении питания MK в пределах 3..5 В можно не опасаться «перепутать» полярность при запаивании «красно-оранжево-жёлто зелёных» индикаторов. Все они гарантированно останутся целыми.

    «Синие» и «белые» светодиоды в этом отношении гораздо более нежные. Они боятся электростатических потенциалов, которые могут накапливаться на одежде и на теле человека. Обратное напряжение для них не должно превышать 5 В и обращаться с ними надо примерно так, как с полевыми транзисторами.

    На Рис. 2.2, а…ж показаны схемы подключения одиночных светодиодов к одной линии MK. На Рис. 2.3, a…M показаны схемы подключения одиночных светодиодов к нескольким линиям MK.

    Рис. 2.2. Схемы подключения одиночных светодиодов к одной линии MK (начало):

    а) стандартная схема ограничения тока через светодиод HL1 при помощи резистора R1. Для ориентира, у идеализированного MK Г 1Н = 4.75 В при токе нагрузки 5…10 мА и Г 1Н = 4.5 В при токе нагрузки 20 мА;

    б) аналогично Рис. 2.2, а, но с инверсией сигнала на выходе МК Для ориентира, у идеализированного MK V OL = 0.15…0.3 В при токе нагрузки

    5.. . 10 мА и V OL = 0.4…0.5 В при токе нагрузки 20 мА. Если выходы MK имеют симметричную нагрузочную способность, то между схемами на Рис. 2.2, а и на Рис. 2.2, б разницы нет;

    в) прямое подключение светодиода HL1 к линии MK возможно, но только при низком напряжении питания. Рабочая точка К ПР = 2 В при / ПР = 15 мА. Однако в каждом конкретном случае надо сверяться с графиками нагрузочной способности линий MK согласно даташиту;

    г) подключение светодиода HL1 к источнику повышенного напряжения +9 В через гасящий стабилитрон VD1. Проверочный расчёт - сумма напряжения питания MK (5 В) и напряжения стабилизации VD1 (5.6 В) должна быть больше, чем разность между повышенным напряжением (9 В) и падением напряжения на светодиоде HL1 (1.7…1.9 В); О

    О Рис. 2.2. Схемы подключения одиночных светодиодов к одной линии MK (окончание):

    д) светодиод HL1 имеет встроенный интегральный резистор, ограничивающий прямой ток. В даташите вместо сопротивления резистора указывается допустимое рабочее напряжение светодиода при токе не более 20 мА. Классификационный ряд при заказе: 3; 5; 12 В;

    е) предполагается, что светодиод HL1 находится на значительном удалении от MK и связан с контактными площадками XI, Х? длинными проводами. Резисторы R1, R2 - защита по току, на случай обрыва проводов и замыкания их на металлический корпус прибора, который, как правило, соединяется с цепью GND («массой»);

    ж) эффект плавного гашения светодиода HL1. В исходном состоянии на выходе MK НИЗКИЙ уровень, светодиод погашен. ВЫСОКИМ уровнем на выходе MK производится быстрое включение светодиода, а затем плавное уменьшение его яркости по мере заряда конденсатора C1. Диод VD1 помогает разряжаться конденсатору С/ при НИЗКОМ уровне на выходе MK.

    Рис. 2.3. Схемы подключения одиночных светодиодов к нескольким линиям MK {начало):

    а) включение светодиодов HL1…HLn производится независимо друг от друга при ВЫСОКОМ уровне на выходе MK. Резисторы R1…Rn ограничивают токи через светодиоды и определяют яркость их свечения. Суммарный ток через вывод питания +5 В при ВЫСОКОМ уровне на всех выходах не должен превышать 100…300 мА (смотреть в даташите на конкретный MK);

    б) аналогично Рис. 2.3, а, но при активном НИЗКОМ уровне и с отдельным источником питания для светодиодов. Если выходы MK имеют симметричную нагрузочную способность и питание светодиодов составляет +5 В, то схемы на Рис. 2.3, а и на Рис. 2.3, б равноценны;

    в) типовой приём сокращения числа резисторов. Применяется, если не требуется одновременное свечение нескольких индикаторов, иначе будет снижаться их яркость из-за повышенного напряжения на резисторе R1\ О

    г) аналогично Рис. 2.3, в, но с «бегущим нулём» на выходах MK;

    д) индикатор HL1 светится, когда на верхней линии MK устанавливается ВЫСОКИЙ, а на нижней - НИЗКИЙ уровень, при этом к выходам MK могут подсоединяться другие узлы;

    е) MK формирует 8 градаций яркости светодиода HL1. Резисторы R1…R3 определяют динамический диапазон и степень линейности характеристики;

    ж) для сверхъяркого светодиода HL1 требуется повышенный ток, что достигается запараллеливанием линий MK. На каждой из них уровни должны выставляться синхронно;

    з) аналогично Рис. 2.3, ж, но с синхронными ВЫСОКИМИ уровнями на выходах MK;

    и) светодиод HL1 индицирует наличие импульсов «бегущей единицы» на трёх выходах MK; к) автоматическая прозвонка длинного кабеля. На линиях MK программно формируется

    «бегущая единица» (на одной линии ВЫСОКИЙ, на остальных - НИЗКИЙ уровень). Если произойдёт обрыв какой-либо жилы, то светодиод в этой цепи будет постоянно погашен; О

    О Рис. 2.3. Схемы подключения одиночных светодиодов к нескольким линиям MK {окончание):

    л) в исходном состоянии на всех выходах MK ВЫСОКИЕ уровни, индикаторы HL1, HL2, HL4 светятся. При аварии на одном или нескольких выходах MK устанавливается НИЗКИЙ уровень, соответствующий индикатор гаснет, при этом автоматически начинает светиться HL3\ м) при большом количестве светодиодов имеет смысл разгрузить силовые выводы MK, направив втекающий и вытекающий токи в разные цепи. В частности, светодиоды HL1…HL8снижают нагрузку на вывод +5 В MK, а светодиоды HL9…HL16 - на вывод GND MK.

    1. ПОЧЕМУ «СВЕТО+ДИОД»?
    Перед знакомством со СВЕТОДИОДОМ весьма желательно узнать кое-что о полупроводниках вообще и об обычном диоде в частности (см. мою статью «Полупроводниковый диод»).
    СветоДиод или СветоИзлучающий Диод (СД, СИД; англ. light-emittingdiode, LED ) - полупроводниковый прибор с электронно-дырочным переходом (p-n-переходом), создающий оптическое излучение при пропускании через него электрического тока в прямом направлении. Условное графическое обозначение светодиода .
    Прямое включение светодиода :
    Программа для расчёта дополнительного резистора на сайте http://www.radiolodka.ru

    Напоминание. Ток в полупроводниках – это упорядоченное движение свободных носителей заряда – электронов и дырок. Реально движутся только «-»электроны. Дырки – это воображаемые «+»заряженные частицы. На самом деле дырка – это то место (упрощённо) в электронной оболочке, откуда «сбежал» электрон. Предполагается, что именно там сосредоточен «+» заряд (о заряде всего атома – «+»иона – как бы забываем). Образование пары «электрон-дырка» называется диссоциацией. Свободные электроны движутся хаотично, и дырки, соответственно, тоже. Если в полупроводнике создать электрическое поле, то движение свободных носителей станет упорядоченным (сильно упрощено) – возникнет электрический ток. Можно считать, что ток в полупроводниках – это упорядоченное движение электронов и дырок.
    На самом деле постоянно происходит и обратный процесс – рекомбинация электронов и дырок: некоторые свободные электроны «возвращаются на круги своя», т.е. занимают свободные места в электронных оболочках. При постоянной температуре процессы рекомбинации и диссоциации взаимно уравновешены (это называется ДИАМИЧЕСКИМ равновесием), концентрация свободных носителей заряда в полупроводнике остаётся неизменной и, соответственно, сила тока не меняется. Изменение температуры в ту или другую сторону влечёт за собой изменение концентрации свободных носителей и изменение величины тока. Именно поэтому сопротивление полупроводников сильно зависит от температуры, но это несколько иная история…

    Итак, светодиод. Из школьной физики известно, что при переходе электрона в атоме с более высокого уровня на более низкий происходит излучение электромагнитного кванта энергии. А свет – это тоже электромагнитное излучение. Значит, всё зависит от того, какова разница энергий «верхнего» и «нижнего» уровней. Именно эта энергия определяет частоту электромагнитного излучения. В некоторых случаях частота соответствует видимому световому диапазону .

    Таким образом, если рекомбинация электронов и дырок сопровождается излучение электромагнитной энергии, мы имеем светодиод. Светодиод может излучать от ультрафиолета (УФ) до инфракрасных (ИК) лучей.
    Не все полупроводниковые материалы эффективно испускают свет при рекомбинации. К лучшим «излучателям» относятся GaAs или InP, а также ZnSe или CdTe. Варьируя состав полупроводников, можно создавать светодиоды для всевозможных длин волн от ультрафиолета (GaN) до среднего инфракрасного диапазона (PbS).
    Диоды, сделанные из кремния, германия или карбида кремния, свет практически не излучают. Однако, в связи с развитием кремниевой технологии, активно ведутся работы по созданию светодиодов на основе кремния.
    В Советском Союзе в 70-х годах ХХ века выпускался жёлтый светодиод КЛ101 на основе карбида кремния (SiC), правда, но имел очень низкую яркость.

    В таблице приведена зависимость цвета свечения светодиода от материала полупроводника

    Длина волны (nm)

    Вольтаж (V)

    Материал полупроводника

    Инфракрасный (ИК)

    Gallium arsenide (GaAs)
    Aluminium gallium arsenide (AlGaAs)

    610 < λ < 760

    1.63 < ΔV < 2.03

    Aluminium gallium arsenide (AlGaAs)

    Оранжевый

    590 < λ < 610

    2.03 < ΔV < 2.10

    Gallium arsenide phosphide (GaAsP)
    Aluminium gallium indium phosphide (AlGaInP)
    Gallium(III) phosphide (GaP)

    570 < λ < 590

    2.10 < ΔV < 2.18

    Gallium arsenide phosphide (GaAsP)
    Aluminium gallium indium phosphide (AlGaInP)
    Gallium(III) phosphide (GaP)

    500 < λ < 570

    1.9 < ΔV < 4.0

    Indium gallium nitride (InGaN) / Gallium(III) nitride (GaN)
    Gallium(III) phosphide (GaP)
    Aluminium gallium indium phosphide (AlGaInP)
    Aluminium gallium phosphide (AlGaP)

    450 < λ < 500

    2.48 < ΔV < 3.7

    Zinc selenide (ZnSe)
    Indium gallium nitride (InGaN)
    Silicon carbide (SiC) as substrate
    Silicon (Si) as substrate - (в разработке)

    Фиолетовый

    400 < λ < 450

    2.76 < ΔV < 4.0

    Indium gallium nitride (InGaN)

    Пурпурный

    разные типы

    2.48 < ΔV < 3.7

    Dual blue/red LEDs,
    синий с красным фосфором,
    белый с пурпурным фильтром

    Ультрафиолетовый (УФ)

    3.1 < ΔV < 4.4

    diamond (235 nm)
    Boron nitride (215 nm)
    Aluminium nitride (AlN) (210 nm)
    Aluminium gallium nitride (AlGaN)
    Aluminium gallium indium nitride (AlGaInN) - (down to 210 nm)

    Широкий спектр

    Синий/УФ диод и желтый фосфор

    2. ВЕРНЁМСЯ К ИСТОКАМ
    Первое известное сообщение об излучении света твёрдотельным диодом было сделано в 1907 году британским экспериментатором Генри Раундом из Маркони Лабс. Раунд впервые открыл и описал электролюминесценцию, обнаруженную им при изучении прохождения тока в паре металл-карбид кремния (карборунд, SiC), и отметил жёлтое, зелёное и оранжевое свечение на катоде.
    Электролюминесценция - люминесценция, возбуждаемая электрическим полем.
    Наблюдается в веществах- полупроводниках и кристаллофосфорах, атомы (или молекулы) которых переходят в возбуждённое состояние под воздействием пропущенного электрического тока или приложенного электрического поля.
    Люминесце́нция (от лат. lumen , род. падеж luminis - свет и -escent - суффикс, означающий слабое действие) - нетепловое свечение вещества, происходящее после поглощения им энергии возбуждения. Впервые люминесценция была описана в XVIII веке.
    Первоначально явление люминесценции использовалось при изготовлении светящихся красок и световых составов на основе так называемых фосфоров, для нанесения на шкалы приборов, предназначенных для использования в темноте. Особого внимания в СССР люминесценция не привлекала вплоть до 1948 года, когда советский учёный С. И. Вавилов на сессии Верховного совета предложил начать изготовление экономичных люминесцентных ламп и использовать люминесценцию в анализе химических веществ. В быту явление люминесценции использовлось в люминесцентных лампах «дневного света» и электронно-лучевых трубках кинескопов. Явление люминесценции лежит в основе явление усиления света, экспериментально подтверждённого работами В. А. Фабриканта и лежащее в основе научно-технического направления квантовой электроники, конкретно находящее своё применение в усилителях света и генераторах стимулированного излучения (лазерах).
    Эксперименты по электролюминесценции позже, независимо от Раунда, были повторены в 1923 году О. В. Лосевым , который, экспериментируя в Нижегородской радиолаборатории с выпрямляющим контактом из пары карборунд-стальная проволока, обнаружил в точке контакта двух разнородных материалов слабое свечение - электролюминесценцию полупроводникового перехода (в то время понятия «полупроводниковый переход» ещё не существовало). Это наблюдение было опубликовано, но тогда весомое значение этого наблюдения не было понято и потому не исследовалось в течение многих десятилетий.
    Лосев показал, что электролюминесценция возникает вблизи спая материалов. Теоретического объяснения явлению тогда не было. Лосев вполне оценил практическую значимость своего открытия, позволявшего создавать малогабаритные твёрдотельные (безвакуумные) источники света с очень низким напряжением питания (менее 10 В) и очень высоким быстродействием. Им были получены два авторских свидетельства на «Световое реле» (первое заявлено в феврале 1927 г.)
    Промышленность стала заниматься разработкой полупроводниковых ламп только в 1951 году . В Соединенных Штатах Америки создали центр, который стал заниматься разработкой ламп, работающих на основе «эффекта Лосева». Центр возглавлял известный ученый К. Леховец.
    Американцы Гари Питтман и Роберт Байард из компании Texas Instruments в 1961 году открыли технологию инфракрасного светодиода и запатентовали ее.
    В 1962 году Ник Холоньяк в Университете Иллинойса разработал для компании General Electric первый в мире светодиод (применяемый на практике), который работал в световом (красном) диапазоне. Таким образом, Холоньяка стали считать «отцом современного светодиода».
    В 1968 году была создана первая светодиодная лампа , которая предназначалась для индикатора Monsanto.
    Также в 1968 году американская компания Hewlett-Packard представила в свет первый в мире светодиодный рекламный плакат. Он представлял из себя слабосветящийся дисплей с информацией, отображающейся красным светом.

    В 1972 году Джордж Крафорд (бывший студент Холоньяка),изобрел первый в мире желтый светодиод и сделал ярче красные и красно-оранжевые светодиоды примерно в 10 раз.
    В 1976 году Т. Пистол создал первый в мире высокоэффективный светодиод высокой яркости, применяемый для телекоммуникации. Он специально адаптирован к передаче данных по волоконно-оптическим линиям связи.
    Светодиоды оставались чрезвычайно дорогими вплоть до 1968 года (около $200 за штуку), их практическое применение было ограничено. Компания «Монсанто» была первой, организовавшей массовое производство светодиодов, работающих в диапазоне видимого света и применимых в индикаторах. Компании «Хьюллет-Паккард» удалось использовать светодиоды в своих ранних массовых карманных калькуляторах.
    Интересно, что вплоть до начала 1970-х годов американскими учёными светодиод назывались Losev light - «свет Лосева». Со временем название Losev light упоминалось реже и реже, и постепенно забылось.

    3. В НАСТОЯЩЕЕ ВРЕМЯ различные светодиоды нашли широчайшее применение. Примеры:

    3.1. Подсветка и индикация в радиоаппаратуре и электробытовых прибораx

    индикаторов уровня выходного сигнала усилителях звуковой частоты ;

    то же самое, но стрелки заменены светодиодами ;

    в ламповых усилителях, когда недостаточно того света, который даёт накал ламп, для большего эффекта включают светодиоды;

    в обычном выключателе освещения.

    3.2. Различные лампы и светильники


    Правда, такие лампы потому и стоят немало, что устроены совсем непросто :


    3.3. Светодиодные лампы и всякая разная подсветка для автомобилей


    3.4. Декоративная подсветка:
    интерьера


    зданий и сооружений

    и других объектов, реклама

    3.5. Лазерный светодиод - полупроводниковый лазер, созданный на базе светодиода.
    При определённых условиях, электрон и дырка перед рекомбинацией могут находиться в одной области пространства достаточно долгое время (до микросекунд). Если в этот момент через эту область пространства пройдёт фотон нужной (резонансной) частоты, он может вызвать вынужденную рекомбинацию с выделением второго фотона, причём его направление, вектор поляризации и фаза будут в точности совпадать с теми же характеристиками первого фотона.
    В лазерном диоде полупроводниковый кристалл изготавливают в виде очень тонкой прямоугольной пластинки. Такая пластинка, по сути, является оптическим волноводом, где излучение ограничено в относительно небольшом пространстве. Верхний слой кристалла легируется для создания n-области, а в нижнем слое создают p-область. В результате получается плоский p-n переход большой площади. Две боковые стороны (торцы) кристалла полируются для образования гладких параллельных плоскостей, которые образуют оптический резонатор, называемый резонатором Фабри-Перо. Случайный фотон спонтанного излучения, испущенный перпендикулярно этим плоскостям, пройдёт через весь оптический волновод и несколько раз отразится от торцов, прежде чем выйдет наружу. Проходя вдоль резонатора, он будет вызывать вынужденную рекомбинацию, создавая новые и новые фотоны с теми же параметрами, и излучение будет усиливаться (механизм вынужденного излучения). Как только усиление превысит потери, начнётся лазерная генерация.
    Лазерные диоды могут быть нескольких типов. У основной их части слои сделаны очень тонкими, и такая структура может генерировать излучение только в направлении, параллельном этим слоям. С другой стороны, если волновод сделать достаточно широким по сравнению с длиной волны, он сможет работать уже в нескольких поперечных режимах. Такой диод называется многомодовым (англ. « multi - mode » ). Применение таких лазеров возможно в тех случаях, когда от устройства требуется высокая мощность излучения, и не ставится условие хорошей сходимости луча (то есть допускается его значительное рассеивание - ). Областями применений таких лазеров являются: печатающие устройства, химическая промышленность, накачка других лазеров. С другой стороны, если требуется хорошая фокусировка луча , ширина волновода должна изготавливаться сравнимой с длиной волны излучения. Здесь уже ширина луча будет определяться только пределами, накладываемыми дифракцией. Такие устройства применяются в оптических запоминающих устройствах, лазерных целеуказателях, а также в волоконной технике. Следует, однако, заметить, что такие лазеры не могут поддерживать несколько продольных режимов, то есть не могут излучать на разных длинах волн одновременно.
    Длина волны излучения лазерного диода зависит от ширины запрещённой зоны между энергетическими уровнями p- и n-областей полупроводника.
    В связи с тем, что излучающий элемент достаточно тонок, луч на выходе диода, вследствие дифракции, практически сразу расходится. Для компенсации этого эффекта и получения тонкого луча необходимо применять собирающие линзы. Для многомодовых широких лазеров наиболее часто применяются цилиндрические линзы. Для одномодовых лазеров, при использовании симметричных линз, сечение луча будет эллиптическим, так как расхождение в вертикальной плоскости превышает расхождение в горизонтальной. Нагляднее всего это видно на примере луча лазерной указки.

    В простейшем устройстве, которое было описано выше, невозможно выделить отдельную длину волны, исключая значение, характерное для оптического резонатора. Однако в устройствах с несколькими продольными режимами и материалом, способным усиливать излучение в достаточно широком диапазоне частот, возможна работа на нескольких длинах волн. Во многих случаях, включая большинство лазеров с видимым излучением, они работают на единственной длине волны, которая, однако обладает сильной нестабильностью и зависит от множества факторов - изменения силы тока, внешней температуры и т. д. В последние годы описанная выше конструкция простейшего лазерного диода подвергалась многочисленным усовершенствованиям, чтобы устройства на их основе могли отвечать современным требованиям

    3.6. В лазерных приводах CD, DVD и Blu-ray

    Примерное устройство накопителя для CD :


    Полупроводниковый лазер (4) генерирует маломощный лазерный луч, который попадает на отражающее зеркало. Двигатель, управляемый микропроцессором смещает подвижную каретку (6) с отражающим зеркалом и фокусирующей линзой (7) к нужной дорожке компакт-диска (1). Луч лазера фокусируется на поверхности диска с помощью линзы, а затем линза фокусирует отраженный от поверхности диска луч. Этот луч с помощью оптической системы (5) подается на фотоприемник (3), который преобразует принятые световые импульсы в электрические, которые затем соответствующим образом расшифровываются контролером (2) и передаются в компьютер в виде цифровых данных.
    Структура CD-диска под электронным микроскопои:

    Компакт-диск (англ. Compact Disc, CD) - оптический носитель информации в виде пластикового диска с отверстием в центре, процесс записи и считывания информации которого осуществляется при помощи лазера. Как отмечено выше, дальнейшим развитием CD стали DVD и Blu-ray, прообразом была граммофонная пластинка.
    Изначально компакт-диск был создан для хранения аудиозаписей в цифровом виде (известен как CD-Audio), однако в дальнейшем стал широко использоваться как носитель для хранения любых данных (файлов) в двоичном виде (т.н. CD-ROM - англ. Compact Disc Read Only Memory, компакт-диск только с возможностью чтения, или КД-ПЗУ - «Компакт-диск, постоянное запоминающее устройство»). В дальнейшем появились компакт-диски не только с возможностью чтения однократно занесённой на них информации, но и с возможностью их записи (CD-R) и перезаписи (CD-RW (англ. Compact Disc-ReWritable, перезаписываемый компакт-диск)).
    Формат файлов на CD-ROM отличается от формата записи аудио-компакт-дисков, и потому обычный проигрыватель аудио-компакт-дисков не может воспроизвести хранимую на них информацию, для этого требуется специализированный привод (устройство) для чтения таких дисков.
    DVD (англ. Digital Versatile Disc - цифровой многоцелевой диск; также англ. Digital Video Disc - цифровой видеодиск) - носитель информации, выполненный в форме диска, имеющего такой же размер, как и CD, но более плотную структуру рабочей поверхности, что позволяет хранить и считывать больший объём информации за счёт использования лазера с меньшей длиной волны и линзы с большей числовой апертурой.
    Для считывания и записи DVD используется красный лазер с длиной волны 650 нм. Шаг дорожки - 0,74 мкм, это более чем в два раза меньше, чем у CD. Записанный DVD, как и компакт-диск - пример дифракционной решётки с периодом, равным шагу дорожки.

    Формат DVD по структуре данных бывают четырёх типов:
    1 - DVD-видео - содержат фильмы (видео и звук);
    2 - DVD-Audio - содержат аудиоданные высокого качества (гораздо выше, чем на аудио-CD);
    3 - DVD-Data - содержат любые данные;
    4 - смешанное содержимое.

    В отличие от CD, в которых структура аудиодиска принципиально отличается от диска с данными, в DVD всегда используется файловая система UDF (для данных может быть использована ISO 9660). DVD-видео, для которых существует требование «быть проигранным на бытовых проигрывателях», используют ту же файловую систему UDF, но с рядом ограничений (документ ECMA-167) - например, не допускается фрагментация файлов. Таким образом, любой из типов носителей DVD может нести любую из четырёх структур данных.

    Blu-ray Disc, BD (англ. blue ray - синий луч и disc - диск; написание blu вместо blue - намеренное) - формат оптического носителя, используемый для записи с повышенной плотностью и хранения цифровых данных, включая видео высокой чёткости. Стандарт Blu-ray был совместно разработан консорциумом BDA. Первый прототип нового носителя был представлен в октябре 2000 года. Современный вариант представлен на международной выставке потребительской электроники Consumer Electronics Show (CES), которая прошла в январе 2006 года. Коммерческий запуск формата Blu-ray прошёл весной 2006 года.
    Blu-ray (букв. «синий луч») получил своё название от использования для записи и чтения коротковолнового (405 нм) «синего» (технически сине-фиолетового) лазера. Буква «e» была намеренно исключена из слова «blue», чтобы получить возможность зарегистрировать товарный знак, так как выражение «blue ray» является часто используемым и не может быть зарегистрировано как товарный знак.
    С момента появления формата в 2006 году и до начала 2008 года у Blu-ray существовал серьёзный конкурент - альтернативный формат HD DVD. В течение двух лет многие крупнейшие киностудии, которые изначально поддерживали HD DVD, постепенно перешли на Blu-ray. Warner Brothers, последняя компания, выпускавшая свою продукцию в обоих форматах, отказалась от использования HD DVD в январе 2008 года. 19 февраля того же года Toshiba, создатель формата, прекратила разработки в области HD DVD. Это событие положило конец так называемой «войне форматов».

    В технологии Blu-ray для чтения и записи используется сине-фиолетовый лазер с длиной волны 405 нм. Обычные DVD и CD используют красный и инфракрасный лазеры с длиной волны 650 нм и 780 нм соответственно. Ёмкость диска обратно пропорциональна длине волны лазера: Blu-ray – 25 Гбайт, DVD – 4,7 Гбайт, CD – 700 Мбайт.

    3.6. Лазерные дальномеры, уровни, нивелиры

    3.7. Лазерные проекторы

    3.8. Такой термин как LED TV был введен корпорацией Samsung для продвижения собственной линейки жидкокристаллических телевизоров с СД-подсветкой (Edge-LED). Этот термин, LED TV, вызывает много споров в вопросе правомерности его использования, так как технически такие телевизоры не являются на 100 % светодиодными (светодиодами осуществляется только подсветка ) - современные полупроводниковые светодиоды по своим размерам намного крупнее, чем пиксели современного телевизора, поэтому реальное использование полноценной светодиодной матрицы для формирования изображения возможно лишь на очень больших дисплеях (например, табло стадионов, рекламные экраны).

    Прежде чем переходить к устройству LED-подсветки, стоит несколько слов сказать о самой терминологии. Прежде всего, никаких LED-телевизоров (за исключением пары OLED-моделей) не существует. Есть специализированные LED-дисплеи, используемые, в частности, в наружной рекламе. Телевизоры, которые называют LED, правильнее называть ЖК-телевизоры с LED-подсветкой.
    LED - что это такое?
    Поскольку жидкие кристаллы в телевизионной матрице не излучают света, ЖК-телевизор по определению нуждается в подсветке. Одним из наиболее эффективных и в то же время простых в использовании и дешевых (относительно) источников света является светодиод (по-английски LED - Light Emission Diod, то есть, буквально, светоизлучайющий диод). Светодиоды обладают высоким КПД (около 95%), при этом питаются малыми токами, и отличаются очень низкой инертностью (быстрое включение/отключение).
    Именно светодиоды и стали применяться в подсветке ЖК-телевизоров последних лет.
    - Краевая подсветка (Edge LED)

    «Краевая» подсветка (ее чаще всего называют Edge LED) строится на основе относительно небольшого количества светодиодов, расположенных по краю экрана, свет от этих светодиодов с помощью световодов (пластин из прозрачного пластика) доставляется в разные области экрана. Такая подсветка довольно дешева (мало светодиодов, простое управление), но, как следствие простоты, - управление подсветкой ограничено крупными зонами экрана возле соответствующего края. Главное преимущество Edge LED - ее дешевизна и компактность: не нужно размещать люминесцентные лампы позади ЖК-матрицы (и обеспечивать воздушный зазор возле ламп, чтобы они эффективно охлаждались током воздуха), что позволяет делать телевизоры более тонкими.
    - Прямая подсветка (Direct-LED)

    Прямая (Direct) или матричная (Matrix) LED-подсветка строится на сетке (матрице) светодиодов, расположенных позади ЖК-панели. При этом каждый светодиод подсветки может включаться и выключаться независимо от прочих. Это значительно увеличивает количество светодиодов подсветки и весьма усложняет управление ими, соответственно, требует более совершенных алгоритмов управления и более производительных процессоров, эти алгоритмы реализующих. Естественно, ЖК-телевизоры с такой LED-подсветкой - самые дорогие, но и самые качественные.В самом деле: если в какой-то части экрана требуется отобразить темный объект, то именно в этом месте экрана подсветку можно приглушить, обеспечивая максимально глубокий черный цвет. Если в это же время в другой, пусть и смежной части экрана, возникает светлая область (например, вспышка от взрыва), то, увеличив яркость подсветки в этой части экрана, можно добиться максимальной яркости изображения. Как следствие, это позволяет существенно повысить контрастность ЖК-телевизора.
    Дальнейшим развитием прямой LED-подсветки стала цветная прямая LED-подсветка . Идея проста: если позади ЖК-дисплея установить матрицу подсветки, состоящую не из единичных белых светодиодов, а из триад красных, зеленых и голубых светодиодов, то можно будет управлять не только яркостью подсветки, но и ее цветом. Технология эта называется RGB LED. Это открывает новые возможности по повышению качества цветопередачи ЖК-телевизоров и повышению цветового контраста.
    C другой стороны, использование дополнительных источников окрашенного света несет в себе опасность искажения естественной цветопередачи: как в случае неправильной изначальной калибровки телевизора, так и в результате раскалибровки прибора со временем.

    3.9. Светодиодный индикатор в термометре, блоке питания

    3.10. Светодиодная матрица

    Что такое светодиодный экран, светодиодные модули?

    Это экран , в котором в качестве источника света используется полупроводниковый светодиод (light-emitting diode – LED). Все современные светодиодные экраны строятся по модульной технологии, т.е. собираются из отдельных одинаковых модулей, как из кирпичиков. К сожалению, унификации и стандартизации в этом вопросе нет. Поэтому каждый разработчик и производитель создает свой тип модуля, размер, сигнальные интерфейсы. Светодиодный экран может быть любого размера, кратного размеру одного модуля.


    Светодиодный модуль представляет собой функционально законченную сборочную единицу, внутри которого смонтирована вся управляющая электроника. На лицевой стороне модуля установлены светодиодные матрицы (суб-модули), которые и образуют информационное полотно экрана в сборе.
    Примеры LED-экранов :

    4. ТИПЫ СВЕТОДИОДОВ
    Светодиоды в очень малой степени подвержены повреждениям, когда работают при низких температурах и небольшом токе. Множество светодиодов, произведенных в 70-80 годах прошлого века, работают по сей день. Однако повышенный ток и высокая температура могут легко вывести их из строя. Основной признак неисправности светодиода – это сильное уменьшение светового потока при номинальном рабочем напряжении. Создание новых типов светодиодов (например, сверхъярких ) привело к повышению рабочих токов и увеличению температуры кристалла. Реакция материалов, из которых производятся мощные светодиоды, на подобные условия, еще до конца не изучена, поэтому деградация кристаллов - одна из основных причин отказов. Светодиод считается неработоспособным, когда его световой поток падает на 75%.

    4.1. Синий свет
    Синие светодиоды базируются на сплавах GaN и InGaN. Комбинация с красным и зеленым светодиодами позволяет получить чистый белый цвет, но такой принцип формирования белого сейчас используется редко.

    Первый синий светодиод был изготовлен в 1971 году Jacques Pankove (изобретателем нитрида галлия). Но он производил слишком мало света, чтобы его можно было использовать на практике. Первый яркий синий диод был продемонстрирован в 1993 году и получил широкое распространение.

    4.2. Белый свет
    Существует два пути получения белого света достаточной интенсивности с применением светодиодов. Первый из них – это объединение в одном корпусе кристаллов трех основных цветов: красного, синего и зеленого . Смешение этих цветов позволяет получить белый цвет. Другой путь – использование фосфора для преобразования синего или ультрафиолетового излучения в белый цвет широкого спектра. Подобный принцип используется при производстве ламп дневного света.

    4.3. Системы RGB
    Белый цвет может быть получен смешением различных цветов, наиболее используемая комбинация - красный, синий и зеленый. Но из-за необходимости контролировать смешение и степень рассеивания цветов стоимость производства RGB-светодиодов довольно высока. Тем не менее, этот метод интересен многим исследователям и ученым, так как позволяет получить разные оттенки цвета. При этом эффективность такого способа получения белого света очень высока.

    Есть несколько типов многоцветных белых светодиодов - ди-, три-, и тетрахроматичные. Есть несколько ключевых особенностей каждого из этих типов, включая стабильность цвета, цветопередачу и световую эффективность. Высокая световая эффективность подразумевает низкий индекс цветопередачи (CRI). Например, дихроматичный белый светодиод имеет лучшую световую эффективность (около 120 Лм/Вт), но самый низкий CRI. Тетрахроматичный - небольшую световую эффективность, но превосходный CRI. Трихроматичный находится примерно посередине.

    Хотя многоцветные светодиоды являются не самым оптимальным решением для получения белого цвета, их использование позволяет создавать системы, производящие миллионы различных оттенков цвета. Основная проблема при этом – разные значения световой эффективности для основных цветов. При повышении температуры это вызывает «уплывание» необходимого цвета.

    4.5. Светодиоды на базе фосфора
    Спектр белого светодиода определяется синим светом, который излучается кристаллом на базе GaN (пик в районе 465 Нм) и, проходя через желтый фосфор (500-700 Нм) преобразуется в белый. Использование фосфора разных типов и оттенков позволяет получать разные оттенки белого - от теплого до самого холодного. Так же зависит от этого и качество цветопередачи. Нанесение на синий кристалл нескольких слоев фосфора разных типов позволяет добиться самого высокого CRI .

    СИД на базе фосфора имеют меньшую эффективность, чем обычные светодиоды, так как часть света рассеивается в слое фосфора, к тому же сам фосфор также подвержен деградации. Тем не менее это способ остается наиболее популярным при коммерческом производстве белых светодиодов. Наиболее часто используется желтый фосфорный материал Ce3+:YAG.

    Также белые светодиоды могут быть изготовлены на базе ультрафиолетовых светодиодов с применением фосфора красного и синего цвета с добавлением сульфида цинка. Этот принцип аналогичен используемому в лампах дневного света. Он хуже предыдущего, но позволяет добиться лучшей цветопередачи. К тому же ультрафиолетовые диоды имеют большую световую эффективность. С другой стороны, УФ излучение вредно для человека.

    4.6. Органические светодиоды (OLED)
    Если основа излучающей поверхности светодиода имеет органическое происхождение , такой светодиод называют OLED (Organic Light Emitting Diode). Излучающим материалом может быть небольшая молекула в фазе кристаллизации или полимер. Полимерные кристаллы могут быть гибкими, соответственно их называют PLED или FLED.

    По сравнению с обычными светодиодами, OLED светлее, а полимерные вдобавок позволяют делать источник света гибким . В будущем на базе таких светодиодов планируется изготовление гибких недорогих дисплеев для портативных устройств, источников света, декоративных систем, светящейся одежды. Но пока уровень разработки OLED не допускает их коммерческое применение.

    4.7. Светодиоды на квантовых точках
    Светодиоды на квантовых точках по показателям яркости и стабильности заметно превосходят своих неорганических собратьев, обладая при этом дополнительными преимуществами в виде широкого спектра поглощения и возможности флуоресценции на любой длине.
    При увеличении диаметра нанокристаллов от 2 до 4 и далее до 6 нанометров цвет излучения изменяется от синего до зеленого и затем красного. Для того чтобы добиться белого света, достаточно смешать кристаллы разных размеров в необходимой пропорции. Таким образом, решена важная проблема, когда один и тот же материал может излучать разные цвета, что было невозможно при использовании кремнийорганических излучателей.

    Фотография QLED-устройства с 24 активными пикселями и графиком , показывающим спектры электролюминисценции QLED (сплошная линия) и фотолюминисценции раствора (пунктирная линия).
    Светодиоды на квантовых точках (Quantum dot LED, QLED) – это перспективная технология для создания больших дисплеев, применяемых в производстве телевизоров, мобильных телефонов и цифровых камер. Однако наивысшие показатели QLED не дотягивают до показателей другой технологии производства больших LED-дисплеев – органических светодиодов (OLED). В рамках нового исследования ученые разработали новый тип QLED с наивысшими на сегодняшний день уровнями эффективности и яркости, сравнимыми с эталонными фосфоресцентными OLED. Внешний квантовый выход новых QLED, равный 18%, более чем в два раза превышает текущие наивысшие показатели, известные исследователям (8%). Показатели эффективности также близки к теоретическому максимуму любого плоского тонкопленочного LED, составляющему 20%.
    Работы были проведены исследователем Бенджамином С. Мэшфордом с соавторами из подразделения компании QD Vision, расположенного в Лексингтоне, шт. Массачусетс, и исследователями из Массачусетского технологического института. Компания QD Vision производит компоненты освещения и дисплеев, чьи продукты сегодня используются в телевизорах Sony Triluminos.
    QLED и OLED имеют уникальные преимущества, однако QLED особенно привлекательны за счет малой толщины и простой настройки цветности, обеспечиваемых изменением размера квантовой точки, контролирующей испускаемую длину волны. QLED, как правило, включающие органические и искусственные материалы, также служат дольше, чем OLED, содержащие только органические материалы.
    Типичные QLED имеют три слоя: внутренний слой из квантовых точек, первый внешний слой, переносящий электроны и второй внешний слой, осуществляющий транспорт дырок. Под воздействием электрического тока на внешние слои, электроны и дырки перемещаются на слой квантовых точек, где они захватываются квантовыми точками и осуществляют рекомбинацию. Рекомбинация одного электрона и одной дырки внутри квантовой точки приводит к эмиссии фотона.
    Как пишут исследователи в своей статье, ключевым требованием получения высокоэффективного QLED является наличие квантовых точек с высоким квантовым выходом для обеспечения электролюминесценции и структурой устройства, оптимизированной для эффективной инжекции заряда.
    Для соблюдения данных требований, исследователи использовали слой, включающий шестинанометровые квантовые точки из селенида кадмия и слой транспорта электронов из нанокристаллов ZnO. Исследователи создали четыре различные версии QLED, каждая с разной толщиной квантовых точек (15, 30, 45, или 60 нм).
    Эксперименты показали, что даже малые изменения толщины квантовых точек приводят к сильным вариациям производительности QLED. Наивысшую эффективность, составившую 18%, показал QLED с толщиной пленки из квантовых точек в 45 нанометров. Это наиболее эффективный красный светодиод из когда-либо созданных с использованием эмиттерного слоя, обработанного раствором. Кроме того, QLED работают с высокой степенью яркости при низком напряжении питания (1,5 В).
    Как объясняют исследователи, изменение толщины пленки из квантовых точек изменяет расстояние между квантовыми точками и заряд транспортных слоев: чем тоньше пленка квантовых точек, тем больше квантовых точек вступает в электрический контакт с внешними слоями.
    «Самая важная задача, которую необходимо решить в области QLED, особенно на текущем этапе – улучшение надежностb или увеличение срока службы устройств, - прокомментировал Сет Кои-Салливан, сооснователь и технический директор подразделения квантовых точек. - Устройства на данном уровне развития технологии работают достаточно долго для использования в нишевых приложениях, но не достаточно для использования в продукции широкого потребления».
    Компания QD Vision продолжит работать над улучшением производительности QLED и повышением их пригодность для массового производства как в видимой области, так и в рамках устройств с использованием инфракрасного диапазона.

    5. Несколько простых конструкций на светодиодах
    5.1. Мигалка-имитатор сигнализации для авто

    Схема мигалки на светодиодах очень проста для повторения. Схема построена на мультивибраторе, частота импульсов которого определяется величиной резисторов R1 и R2, конденсатора C1.
    Размеры платы получаются очень маленькие, и данную схему можно разместить в автомобиле для имитации охранной сигнализации (ведь еще встречаются такие машины, без сигнализации).
    Печатная плата для данного устройства не требуется, так как развести дорожки для такого минимума радиодеталей можно самостоятельно.
    В таблице приведены значения сопротивлений и конденсаторов для различных напряжений и частоты вспышек.
    От R1 в большей степени зависит длительность паузы между импульсами, от R2 - длительность импульса.
    Чтобы увеличить паузу между вспышками следует увеличивать сопротивление резистора R1, для уменьшения длительности импульса уменьшать сопротивление резистора R2.
    Таблица значений резисторов и конденсаторов

    Питание, В

    Частота вспышек в минуту

    5.2. Простейшая двухканальная цветомузыка

    На входе у цветомузыкальной приставки стоят 2 частотных фильтра. Один пропускает высшие частоты, другой - низшие (1-C1 R4, 2-R3 C2). После сигнал из фильтров поступает на усилительные каскады, а затем и на светодиоды. Светодиоды можно использовать любого цвета (я использовал первый зелёного цвета, а другой - красного). Уменьшив номиналы резисторов R5 и R6 до пару сотен Ом и поставив транзисторы КТ817, можно подключать более мощные светодиоды. Тогда световой эффект станет освещать всю комнату.

    К динамику источника сигнала нужно подключить входы х1 и х2. Нетрудно различать реакцию светодиодов на звуки той или иной тональности. При басах будет вспыхивать светодиод красного цвета свечения, а на остальные звуки - вспышки светодиода зеленого цвета. Яркость можно устанавливать регулятором громкости источника звукового сигнала. Принципиальная схема цветомузыки изображена ниже.

    Транзисторы можно использовать любые высокочастотные кт315, кт3102, с945. Ещё я добавил в схему цветомузыки микровыключатель s1. Эту схему я использую для компьютера, когда слушаю музыку.
    Сайт http://radioskot.ru/publ/skhema_cvetomuzyki_na_svetodiodakh/1-1-0-95

    5.3. Мигалка на 4 светодиода


    Вариант светодиодной мигалки на 4-х светодиодах, позволяющий создавать простой эффект "бегущий огонь" с применением минимального количества радиодеталей. В основе данной схемы лежит мультивибратор на двух транзисторах КТ315 которые поочередно подают сигналы на светодиоды VD1-VD4. В данной схеме конденсаторы С1-С4 подобраны таким образом чтоб создать эффект бегущего огня. При помощи резисторов R6,R7 можно менять частоту загорания светодиодов. Данная электросхема будет интересна всем начинающим радиолюбителям не только своей простотой, а также возможностью индивидуального подбора емкости конденсаторов С1-С4, тем самым создавая различные световые эффекты.

    5.4. Бегущие огни на 6 светодиодах

    Схема такого устройства показана на рисунке 1. Чередоваться светодиоды должны так: VD1, VD3, VD5, VD2, VD4, VD6. Пары светодиодов включены в коллекторные цепи транзисторных каскадов, которые соединены как бы в кольцо, образуя так называемый трехфазный мультивибратор. Скорость переключения каскадов, а значит, вспыхивания светодиодов, зависит от номиналов деталей времязадающих цепей - переходных конденсаторов и базовых резисторов. Для ограничения яркости свечения гирлянды последовательно со светодиодами включены ограничительные резисторы (R2, R4, R6). Транзисторы могут быть любые из серий КТ342, КТ3102 или другие кремниевые структуры n-p-n с возможно большим коэффициентом передачи тока (но не менее 100). Конденсаторы - К50-6, резисторы МЛТ-0,125, светодиоды - серий АЛ101, АЛ102, АЛ307, источник питания - батарея 3336 (или 3 последовательно соеденённых элемента типа AA)

    5.5. Электронный пробник напряжения


    Электронный пробник на светодиодах для определения величины напряжения и полярности тока. Пробник, принципиальная схема которого приведена на рис. 11, позволяет определять наличие напряжения между двумя точками испытуемого устройства, его полярность и примерную величину. Принцип его работы основан на свечении светодиодов при протекании через них тока определенной величины.
    В пробнике используются светодиоды типа АЛ101В. Чтобы избежать выхода из строя светодиодов, переключающий штекер Ш1 перед каждым измерением следует устанавливать в крайнее левое гнездо по схеме. В процессе работы штекер переключают последовательно и поочередно в гнезда «150 В», «24 В» и т. д. до тех пор, пока светодиод не начнет излучать свет. По тому, какой диод светится, судят о полярности напряжения. Если напряжение на входе пробника переменное, то светятся оба диода.

    5.6. Светодиодная стрелка

    Стрелка сделана из набора двухцветных и одноцветных светодиодов. В зависимости от направления тока, пропускаемого через неё, меняется направление указателя и его цвет. В одну сторону показывает зелёная стрелка, а если переменить полярность – в другую сторону будет показывать красная стрелка.

    5.7. Ночник на светодиодах и


    В схеме на рисунке 1 применены сверхяркие белые светодиоды (HL1 ÷ HL4), используемые в ручных фонарях, светильниках и лампах. Каждый светодиод светится при напряжении около 3,6 вольта. Так для четырёх светодиодов, включённых последовательно, необходимо напряжение порядка 14,4 вольта.
    Требуемое напряжение питания ночника на светодиодах обеспечивает стабилитрон VD5, питаемый от бестранформаторного выпрямителя, состоящего из гасящих элементов C1, R1, R2 и выпрямительного моста на диодах VD1 ÷ VD4. Включение ночника осуществляется при помощи фоторезистора RK1, управляющего ключом на транзисторе VT1.
    При обычном дневном освещении фоторезистор RK1 имеет низкое сопротивление, порядка 100 ÷ 200* Ом, что надежно удерживает транзистор VT1в закрытом состоянии. При наступлении сумерек его сопротивление увеличивается, а смещение на базе транзистора начинает повышаться, пока не подойдет к порогу открывания транзистора. При достижении порога открывания, транзистора открывается и включает светодиоды HL1 ÷ HL4. При наступлении светлого времени суток, сопротивление фоторезистора уменьшается, а светодиоды гаснут. Настройка порога включения ночника на светодиодах производится резистором R3.
    В схеме применены следующие детали: конденсатор С1 – любой на напряжение не менее 400 вольт, диоды VD1 ÷ VD4 на напряжение не менее 400 вольт и на ток больше 400 мА, транзистор VT1 типа КТ503Г или ему подобный, стабилитрон VD5 на напряжение 16 ÷ 18 вольт или составленный из двух на нужное напряжение, конденсатор С2 на напряжение 50 вольт.
    Ночник на светодиодах конструктивно может иметь любой подходящий полупрозрачный (матовый) корпус. Важно, чтобы фоторезистор имел прозрачный защитный глазок (лучше с линзой) на корпусе конструкции.
    Если нет фоторезистора, то схему можно упростить, а включение ночника на светодиодах производить при необходимости переключателем, как показано на схеме ниже:

    5.8. Светомузыкальная установка на светодиодах

    Светомузыкальная установка создаёт зрительный эффект на домашней ёлке или на дискотеке. С первыми аккордами музыки светодиодные гирлянды разгораются разноцветными переливами.
    В основе работы схемы лежит принцип частотного разделения звукового сигнала в каналах, разным частотам соответствует свой цвет свечения светодиодов.
    Для устранения эффекта мерцания и снижения усталости глаз введён канал подсветки, отключение которого происходит при включении в работу канала синего цвета.
    Схема устройства состоит из трёх светомузыкальных каналов: низкой – красный, средней- зелёный и высокой частоты – синий. Во входных цепях установлены регуляторы уровня сигнала, от режима установки которого зависит яркость гирлянд.
    Уровень входного сигнала может варьироваться от 0,5 до 3 вольт- вход «радио», для более высокого уровня сигнала, как от трансляции, порядка тридцати вольт выполнен дополнительный вход- «линия».
    Дополнительно, для удобства, установлен регулятор уровня входного сигнала.
    В принципиальную схему кроме трёх каналов с входными фильтрами входят: входной усилитель сигналов, канал подсветки и адаптер питания.

    Описание схемы:
    Ключевыми устройствами в канал схемы являются тиристоры.
    Внешний сигнал с разграничение по уровню подаётся на верхний или нижний вход (линия или радио).
    Сигнал через регулятор яркости R9 и конденсатор С3 поступает на вход усилителя на транзисторе VT1 обратной проводимости. В усилители предусмотрено автоматическое ограничение сигнала диодом VD1. Превышение сигнала на базе транзистораVT1 приводит к открытию диода VD1 и шунтированию перехода база-эмиттер.
    Снятый с коллектора транзистора VT1 сигнал поступает для распределения на входные регуляторы уровня каналов, резисторы R1. Далее сигнал поступает на фильтры каналов с частотным разделением 50-200 Гц, 250-1000Гц,1200-5000Гц.
    После частотного разделения сигналы поступают на вход предварительных усилителей на тиристорах VS1. Резисторы R3 позволяют подогнать чувствительность входных тиристоров в связи с разбросом характеристик.
    Усиленный сигнал с нагрузки R5 катода VS1 поступает на управляющий электрод усилителя мощности на тиристорах VS2. Светодиодные гирлянды HL1-HL21 включены попарно в анодную цепь выходного тиристора по десять штук в две параллельные линии. В светодиодные линии также установлены ограничительные резисторы R6,R7 -(R17,R18 в подсветке).
    Канал подсветки составлен на одном тиристоре VS3 и управляется с анода выходного тиристора синего канала.
    Питание предварительного усилителя и выходных каналов раздельное – предварительный усилитель питается от двухполупериодного выпрямителя на диодном мосте VD3 и далее через резистор R16 и диод VD2 в обратном включении.
    Диод VD2 предотвращает шунтирование тиристоров каналов постоянным напряжением, сглаженным конденсатором С4.
    Каналы светомузыкальной установки питаются импульсным напряжением с выпрямителя VD3.
    Силовой трансформатор Т1 установлен небольшой мощности не более 20 ватт от китайского адаптера, конечно при возможной замене светодиодной гирлянды на лампочки, мощность трансформатора придётся увеличить раз в пять.
    Наладка светомузыкальной установки заключается в подборе начальных уровней сигнала на каждом канале, желательно подать сигнал с генератора и подбором конденсаторов С1,С2 добиться соответствия полосы пропускания каналов.
    Канал подсветки подстраивается резистором R14.
    Таблица замен :


    Наименование

    Замена

    Примечание

    Транзистор VT1

    Резисторы R1-R18

    ТиристорыVS1-VS3

    Резистор R3

    Диод VD1,VD2

    Трансформатор T1

    12В 1 Ампер

    Резистор R1,R9

    Следует заметить что в схеме все три канала имеют одинаковые наименования деталей, так как идентичны, кроме входных фильтров, количество каналов можно увеличить выполнив две платы, что даст возможность дополнить цвета.
    Схема собрана на печатной плате и установлена с трансформатором в пластмассовом блоке БП-1.
    Гирлянды располагаются по усмотрению читателя, подключаются к схеме устройства тонким многожильным проводом в изоляции диаметром 0.24мм.

    5.9. Универсальные пробники на светодиодах и

    Пробником можно проверить наличие напряжения в контролируемой цепи, определить его вид (постоянное или переменное), а также проводить "прозвонку" цепей на исправность. Схема устройства показана на рис. 1
    Светодиод HL2 индицирует наличие на входе (вилки ХР1 и ХР2) постоянного напряжения определенной полярности. Если на вилку ХР1 поступает плюсовое напряжение, а на ХР2 - минусовое, через токоограничивающий резистор R2, защитный диод VD2, стабилитрон VD3 и светодиод HL2 протекает ток, поэтому светодиод HL2 будет светить. Причем яркость его свечения зависит от входного напряжения- При обратной полярности входного напряжения он светить не будет.
    Светодиод HL1 индицирует наличие на входе устройства переменного напряжения. Он подключен через ограничивающие ток конденсатор С1 и резистор R3, диод VD1 защищает этот светодиод от минусовой полуволны переменного напряжения. Одновременно со светодиодом HL1 будет светить и HL2. Резистор R1 служит для разрядки конденсатора С1. Минимальное индицируемое напряжение - 8 В.
    В качестве источника постоянного напряжения для режима "прозвонки" соединительных проводов применен ионистор С2 большой емкости. Перед проведением проверки необходимо его зарядить. Для этого устройство подключают к сети 220 В примерно на пятнадцать минут. Ионистор заряжается через элементы R2, VD2, HL2, напряжение на нем ограничено стабилитроном VD3. После этого вход устройства подключают к проверяемой цепи и нажимают на кнопку SB1. Если провод исправей, через него, контакты этой кнопки, светодиод HL3, резисторы R4, R5 и плавкую вставку FU1 потечет ток и светодиод HL3 станет светить, сигнализируя об этом. Запаса энергии в ионисто-ре достаточно для непрерывного свечения этого светодиода около 20 мин.
    Ограничительный диод VD4 (напряжение ограничения не превышает 10,5 В) совместно с плавкой вставкой FU1 защищает ионистор от высокого напряжения в случае, если при контроле входного напряжения или зарядке ионистора будет случайно нажата кнопка SB1. Плавкая вставка перегорит и потребуется ее замена.
    В устройстве применены резисторы МЛТ, С2-23, конденсаторС1 - К73-17в, диоды I N4007 можно заменить на диоды 1N4004, 1N4005, 1 N4006, стабилитрон 1N4733 - на 1N5338B. Все детали смонтированы на макетной монтажной плате с применением проводного монтажа.

    Второй пробник в виде щупа собран на светодиодах и кроме "прозвонки" цепей позволяет определить тип напряжения (постоянное или переменное) и приближенно оценить его значение в интервале от 12 до 380 В. Автор этого устройства - А. ГОНЧАР из г. Рудный Кустанайской обл. Казахстана. Ему по роду своей деятельности часто приходится контролировать работоспособность и ремонтировать различные устройства, где примененяются различные по значению (36, 100,220 и 380 В) постоянные и переменные напряжения. Для проверки подобных цепей предлагаемый пробник очень удобен, поскольку не требуется проводить переключений при различном контролируемом напряжении. При разработке этого устройства за основу был принят пробник, описание которого опубликовано в "Радио" № 4 за 2003 г. на с. 57 (Сорокоумов В. "Универсальный пробник-индикатор"). С целью расширения функциональных возможностей он был доработан.
    Схема содержит гасящий резистор R1, шкалу из двухцветных светодиодов HL1-HL5, накопительный конденсатор С1 и индикатор фазного провода на неоновой лампе HL7. Устройство может работать в трех режимах: индикатора напряжения, указателя фазного провода и "прозвонки" - индикатора проводимости электрической цепи.
    Для индикации напряжения вход устройства - штырь ХР1, вставленный в гнездо XS2, и гнездо XS1 (с помощью гибкого изолированного провода), подключают к контролируемым точкам. В зависимости от разности потенциалов этих точек через резисторы R1-R6 и стабилитрон VD1 протекает различный ток. С увеличением входного напряжения возрастает и ток, что приводит к росту напряжения на резисторах R2- R6. Светодиоды HL1-HL5 поочередно загораются, сигнализируя о значении входного напряжения Номиналы резисторов R2-R6 подобраны так, чтобы при напряжении 12 В и более загорался све-тодиод HL5, 36 В и более - HL4. 127 В и более - HL3, 220 В и более - HL2 и 380В и более-Н1_1.
    В зависимости от полярности входного напряжения цвет свечения будет различным. Если на штыре ХР1 плюс относительно гнезда XS1. светодиоды горят красным цветом, если минус - зеленым. При переменном входном напряжении цвет свечения - желтый. Следует отметить, что при переменном или минусовом входном напряжении может гореть и светодиод HL6.
    В режиме указателя фазного провода в сети любой из входов (ХР1 или XS2) подключают к контролируемой цепи и прикасаются пальцем к сенсору Е1. Неоновая индикаторная лампа зажжется, если эта цепь соединена с фазным проводом
    Для использования устройства для "прозвонки" цепей необходимо предварительно зарядить накопительный конденсатор С1. Для этого вход устройства на 15...20 с подключают к сети 220 В или к источнику постоянного напряжения 12 В и более {плюсом на вилку ХР1) За это время конденсатор С1 успеет зарядиться через диод VD2 до напряжения, немного меньшего 5 В (оно ограничено стабилитроном VD1). При последующем подключении к контролируемой цепи, если она исправна, конденсатор будет разряжаться через нее. резистор R7 и светодиод HL6, который загорится. Если проверку проводить кратковременно, то зарядки конденсатора хватит на несколько проверок, после чего зарядку конденсатора следует повторить.

    Применены постоянные резисторы R1 - ПЭВ-10. остальные - МЛТ, С2-23. конденсатор - К50-35 или импортный, диод КД102Б можно заменить на любой диод из серии 1N400x, стабилитрон КС147А - на КС156А, взамен двухцветных светодиодов можно применить по два разного цвета свечения, включив их встречно-параллельно, светодиод HL6 желательно применить с повышенной яркостью свечения. Следует отметить, что светодиоды разного цвета свечения имеют различные значения прямого напряжения, поэтому пороги их включения при разной полярности входного напряжения не будут одинаковыми.

    5.10. Световой индикатор включения на светодиоде
    Предлагаемое простое устройство, собранное из доступных деталей, предназначено для работы в цепи переменного тока напряжением 220В.


    Jно позволяет отображать три различных состояния: 1 - когда шнур аппарата вставлен в розетку с питающим напряжением 220 В, но аппарат выключен - двухкристальный светодиод светит слабым красным цветом; 2 - когда аппарат включен (контакты SA1 замкнуты), т. е. аппарат работает, светодиод светится зеленым цветом; 3 - когда в цепи питания аппарата перегорает защитный предохранитель FU1 - светодиод HL1 светит ярким красным цветом. Подключаемая нагрузка может быть любого типа, например, сетевой адаптер, зарядное устройство, электроплитка, пылесос, лабораторный блок питания. Устройство может быть встроено в конструкции, не имеющие собственных элементов индикации, или для модернизации их старых узлов индикации, выполненных по очень простым схемам.
    Разберем первую ситуацию - когда сетевой шнур вставлен в штепсельную розетку, но аппарат выключен (контакты SA1 разомкнуты). Слабое, не утомляющее зрение, но заметное красноватое свечение светодиода вовремя напомнит о том, что на устройство подается напряжение питания - при прикосновении к токоведущим частям вы можете ощутить опасные для здоровья сетевые 220 В. Сигнализация предотвратит вмешательство в конструкцию, не отключив ее полностью от сети. Многие серьезные промышленные производители бытовой техники рекомендуют при длительных перерывах в работе их изделий, все же выдергивать вилку сетевого шнура из розетки, а не полагаться только на встроенный сетевой выключатель. Особенно это актуально во время грозы.
    При работе в вышеописанном режиме светодиод получает питание по цепи R1, VD1, потребляемая индикатором мощность (большая часть которой рассеивается на резисторе R1) будет около 70 мВт.
    При замыкании котамов SA1 на аппарат подается напряжение питания переменного тока 220 В. По цепи VD3, R6 получает питание «зеленый» кристалл HL1. открывается транзистор VT2, который шунтирует «красный» кристалл HL1 светодиод светит достаточно ярким зеленым цветом.
    Потребляемая узлом индикации от сети не превышает 0,6 Вт (к теплоте, рассеиваемой R1, добавляется тепловая энергия, рассеиваемая токоограничительным резистором R6). При замыкании контактов SA1 светодиод будет светить зеленым цветом и при отключенной нагрузке. При аварийном перегорании плавкого предохранителя FU1 открывается высоковольтный p-n-р транзистор VT1. Светодиод HL1 загорается ярким красным цветом. Если при этом нагрузка окажется неподключенной, то будет заметно слабое подсвечивание «зеленого» кристалла HL1. Рассеиваемая мощность на R2 при напряжении питания 220 В не превысит 0,7 Вт.
    При аварии в сети электроснабжения входное напряжение питания около 380 В (собственно, при этом как раз и обязан перегореть FU1), рассеиваемая R2 мощность не превысит 2 Вт, что хоть и приведет к его сильному разогреву, но не способно вызвать его возгорание. Учитывая возможную круглосуточную эксплуатацию этого узла, решено было отказаться от использования гасящих избыток тока пленочных конденсаторов, которые должны бы были быть высоконадежными и с большим запасом по напряжению. Применение токоограничительных резисторов с большим запасом по мощности надежнее, учитывая, что в нормальном режиме это устройство потребляет от сети мощность не более 0,6 Вт.
    В устройстве, собранном в соответствии со схемой на рис. 1, можно использовав иосюинные резисторы С1-4. С2-23, С2-33, МЛТ соответствующей мощности. На месте R2, R6 желательно использовать невозгораемые отечественные резисторы типа Р1-7 (корпус окрашен краской серого цвета) или специальные импортные разрывные. Эти же резисторы желательно устанавливать на высоте 15..20 мм от основания печатной платы. Выпрямительные диоды можно использовать любые кремниевые, допускающие обратное напряжение не менее 600 В. например. КД243Д, Е, Ж. КД247Г, Д, КД105В, Г, 1N4006, RL106.
    Дешевый и распространенный высоковольтный транзистор VT1 можно заменить на КТ9178А, КТ851Б. КТ505А, MPSA-92, BF493, 2SA1625 М, L, К. Транзистор VT2 заменяется любым из серий КТ3102, КТ312, КТ645, КТ503, SS9014, 2SC2001, 2SC900. Учитывая небольшие токи, протекающие через кристаллы HL1, светодиод желательно взять с повышенной светоотдачей. Автор применил импортный двухкристальный светодиод фирмы "Kingbright" в прозрачном корпусе диаметром 5 мм. Его яркость -150 мКд как «красного» (GaAsH/GaP), так и «зеленого» (GaP) кристаллов.
    Вместо него можно использовать аналогичные двуханодные светодиоды, например, L59SRCG/CC, L59SURK-MGKW, L59EGW. L799SURKMGKW, L119SRGWT/CC, L93WEGC. Упомянутые светодиоды имеют хорошую яркость свечения, но конструкция и тип корпусов светодиодов разных серий различна.
    На печатной плате этого устройства предусмотрено место под установку плавкого предохранителя FU1. Если дорабатываемая конструкция имеет «свой» аналогичный предохранитель, то выводы его обоймы следует соединить с печатной платой двумя гибкими проводами достаточного сечения. Если штатный выключатель аппарата, обозначенный на схеме как SA1, сдвоенный (как чаще всегo и бывает), то вторая группа его контактов должна включаться в схему «правее» точки «А», что не представляет каких-либо трудностей.
    Правильно собранное устройство не требует налаживания. При проверке его работоспособности следует учитывать, что оно гальванически связано с сетью переменного тока напряжением 220 В, и соблюдать соответствующие меры осторожности. Впрочем, как раз свечение HL1 вовремя напомнит о том, что прежде чем что-то перепаивать или отвинчивать, следует выдернуть элекровилку шнура из розетки. При потребляемом нагрузкой токе более 3 А печатные дорожки питания следует «усилить» медным многожильным проводим диаметром не менее 1 мм.

    5.11. Простой индикатор напряжения 12В с RGB светодиодом


    Для исключения аварийных ситуаций, связанных с электрооборудованием автомобиля, желательно иметь индикатор, состояния аккумулятора. Автор предлагает выполнить его на трехцветном RGB светодиоде. Пока напряжение на аккумуляторе находится в диапазоне от 12 до 14 В, то светится зеленый светодиод, соединенный через резисторы R5 и R9 и стабилитрон VD3. Транзистор VТ2 при этом открыт, а VТЗ - закрыт.
    Если напряжение ниже 11,5 В (установленное потенциометром R4 и стабилитроном VD2), транзистор VТ2 закрывается, транзистор VТЗ открывается, при этом загорается синий светодиод. Он индицирует низкое напряжение.
    Повышенное напряжение (свыше 14,4 В, установленное потенциометром R2) индицирует красный светодиод.
    Список компонентов
    R1 - 1 кОм, 1206
    R2, R3, R5 10 кОм, 1206
    R4, R7 - 2,2 кОм, 1206
    R6 - 47кОм, 1206
    R8, R9 - 100 кОм, SMD
    VD1 - 10В MELF
    VD2 - 8v2, MELF
    VD3 - 5V6, MELF
    T1, T2, T3 - BC847C
    HL1 - RGB LED 5мм, желательно матовый

    Светодиод в различных его "проявлениях" настолько многообразен, что продолжать тему можно ещё довольно долго. Но надо и меру знать.

    НАЗАД на страницу РАДИОкомпоненты

    Похожие статьи