• Плавный пуск ламп накаливания. Плавное включение ламп накаливания: ваши лампочки перестанут прегорать Плавный пуск ламп накаливания 12 вольт

    22.03.2024

    Несмотря на популяризацию светодиодных ламп, их предшественники с нитью накала по-прежнему продолжают освещать миллионы домов, во многом благодаря более низкой розничной цене. В эту категорию можно отнести не только привычные по форме лампы накаливания, но и галогенные источники света с цоколем GU4 и GU5.3 и пр.

    Не секрет, что чаще всего лампочки с нитью накала перегорают в момент включения, когда спираль обладает наименьшим электрическим сопротивлением. Изменить ситуацию и продлить срок службы осветительного прибора поможет устройство плавного включения ламп накаливания (УПВЛ). Задача УПВЛ состоит в постепенном увеличении напряжения на нагрузке, исключая резкие броски тока впервые доли секунд после включения.

    С УПВЛ можно не бояться частых кратковременных включений.

    Организовать плавное включение света у себя в доме несложно. Для этого достаточно купить готовое устройство плавного пуска или сделать его самостоятельно, опираясь на практические наработки радиолюбителей. Рассмотрим оба варианта.

    Готовые сборки

    Существует множество надёжных устройств от отечественных и зарубежных производителей, которые позволяют реализовать плавное включение и выключение ламп накаливания. Их несложно найти в магазине электротоваров в виде небольших коробочек с надписью: «Устройство плавного пуска галогенных ламп» или «Блок защиты галогенных и стандартных ламп накаливания». Акцент на галогенках сделан ввиду их высокой стоимости в сравнении с обычными лампочками, что должно привлечь больше покупателей. К примеру, УПВЛ на 220В размером со спичечный коробок, способно длительное время выдерживать нагрузку до 300 Вт и стоит порядка 300 рублей. Плавный пуск ламп накаливания можно реализовать через так называемый фазовый регулятор. По сути, это тот же УПВЛ, но рассчитанный на большую нагрузку и имеющий более сложную систему управления. Его габариты определяются размером радиатора, который необходим для отвода тепла от силового элемента схемы (как правило, симистора). Фазовый регулятор приличного качества на 1000 Вт можно приобрести примерно за 600 рублей.

    Напряжение на выходе блока для плавного включения освещения на несколько вольт ниже, чем в сети, что дополнительно продлевает продолжительность жизни лампы.

    Каждое из устройств, обеспечивающее плавное включение ламп накаливания, включается в электрическую цепь последовательно, то есть в разрыв одного из проводов: фазы или нуля. При этом время нарастания напряжения в нагрузке фиксировано и не регулируется. Оно задаётся изготовителем и может составлять от десятых долей до трёх секунд.

    Для тех, кто ставит под сомнение качество промышленных УПВЛ (особенно китайского происхождения), существует множество простых надёжных схем, пригодных для сборки своими руками. Рассмотрим одну из них.

    Простая схема для сборки своими руками

    Ниже приведенная схема проста в сборке, надежна и примечательна тем, что разработана не только для плавного включения ламп накаливания на 220В, но и для их плавного отключение. А также стоит отметить, что задержка вспышки и затухания задаётся на стадии сборки по собственному усмотрению.

    Схема

    Принципиальная схема плавного включения ламп накаливания приведена на рисунке ниже. В её основе лежит микросхема КР1182ПМ1 (DIP8), внутри которой размещены два тиристора и две системы управления к ним. Конденсатор С3 и резистор R2 задают длительность плавного включения и выключения соответственно. Симистор VS1 необходим для разделения силовой и управляющей части, а резистор R1 задаёт ток управляющего электрода. С1, С2 – внешние конденсаторы, необходимые для управления работой тиристоров внутри КР1182ПМ1. Цепочка R4, С4 защищает элементы схемы от сетевых помех.

    Принцип работы

    В исходном положении контакты выключателя SA1 должны быть замкнуты. Этот нюанс следует учитывать во время подключения платы к настенному выключателю. В момент размыкания контактов SA1 конденсатор С3 начинает набирать ёмкость, тем самым запуская в работу системы управления тиристорами. На выходе ИМС через резистор R1 происходит постепенное нарастание тока, который управляет работой силового ключа. Результатом работы системы управления является плавный пуск симистора VS1 и последовательно с ним включённой лампочки EL1.

    Скорость нарастания тока на управляющем электроде зависит от номинала конденсатора С3. Чтобы лампа постепенно зажигалась в течение 3 секунд, ёмкость С3 должна составлять 100 мкФ. Для увеличения времени до 10 секунд придётся установить С3 на 470 мкФ. Длительность мягкого отключения задаётся резистором R2. Рекомендуется начать подбор с номинала в 2 кОм.

    Печатная плата и детали сборки

    Готовую печатную плату из одностороннего текстолита размером 40х45 мм в файле Sprint Layout 6.0 можно скачать . Для повышения защиты в схему добавлен предохранитель FU1 на ток 1А. Плата разработана под следующие номиналы радиоэлементов:

    • DA1 – КР1182ПМ1;
    • С1,С2 – 1 мкФ-16В (полярный);
    • С3 – 470 мкФ-16В (полярный);
    • С4 – 0,1 мкФ-630В (неполярный);
    • R1 – 470 Ом-0,25 Вт±5%;
    • R2 – 3 кОм-0,25 Вт±5%;
    • R4 – 51 Ом-0,25 Вт±5%;
    • VS1 – КУ208Г.

    Использование устройств, обеспечивающих плавное включение ламп накаливания, приносит пользу людям уже несколько десятков лет. С помощью УПВЛ срок службы лампочек с нитью накала увеличивается как минимум на 40%. Что касается приведенной выше схемы, то ее работоспособность и безотказность проверена на собственном опыте.

    Читайте так же

    Плавное включение лампы накаливания своими руками.

    В ходе непрекращающегося перегорания ламп накаливания, и в том числе на лестничн ой площадке было реализовано несколько схем защиты ламп накаливания в интернете.Их применение дало положительный результат – лампы приходится менять гораздо реже. Однако не все реализованные схемы устройств работали «как есть» - в процессе эксплуатации приходилось производить подбор оптимального набора элементов. Параллельно производился поиск других интересных схем. Как известно, плавное включение ламп накаливания увеличивает срок их службы и исключает броски тока и помехи в сети. В устройстве, которое реализует такой режим, удобно использовать мощные полевые переключательные транзисторы. Среди них можно выбрать высоковольтные, с рабочим напряжением на стоке не менее 300 В и сопротивлением канала не более 1 Ом.

    Схема плавного включения - 1

    Автор приводит две схемы плавного пуска ламп. Однако, здесь хочу предложить только схему с оптимальных режимом работы полевого транзистора, что позволяет его использовать без радиатора при мощности лампы до 250 Ватт. Но вы можете изучить и первую - которая проще тем, что включается в разрыв одного из проводов. Тут по окончании зарядки конденсатора напряжение на стоке составит примерно 4…4,5 В, а остальное напряжение сети будет падать на лампе. На транзисторе при этом будет выделяться мощность, пропорциональная току, потребляемому лампой накаливания. Поэтому при токе более 0,5 А (мощность лампы 100 Вт и больше) транзистор придется установить на радиатор. Для существенного уменьшения мощности, рассеиваемой на транзисторе, автомат необходимо собрать по схеме, приведенной далее.

    Плавное включение своими руками-схема 2


    Схема устройства, которое включается последовательно с лампой накаливания, приведена на рисунке. Полевой транзистор включен в диагональ диодного моста, поэтому на него поступает пульсирующее напряжение. В начальный момент транзистор закрыт и все напряжение падает на нем, поэтому лампа не горит. Через диод VD1 и резистор R1 начинается зарядка конденсатора С1. Напряжение на конденсаторе не превысит 9,1 В, потому что оно ограничено стабилитроном VD2. Когда напряжение на нем достигнет 9,1 В, транзистор начнет плавно открываться, ток будет возрастать, а напряжение на стоке уменьшаться. Это приведет к тому, что лампа начнет плавно зажигаться.

    Но следует учесть, что лампа начнет зажигаться не сразу, а через некоторое время после замыкания контактов выключателя, пока напряжение на конденсаторе не достигнет указанного значения. Резистор R2 служит для разрядки конденсатора С1 после выключения лампы. Напряжение на стоке будет незначительным и при токе 1 А не превысит 0,85 В.


    При сборке устройства были использованы диоды 1N4007 из отработавших свое энергосберегающих ламп. Стабилитрон может быть любой маломощный с напряжением стабилизации 7...12 В.

    Под рукой нашелся BZX55-C11. Конденсаторы - К50-35 или аналогичные импортные, резисторы - МЛТ, С2-33. Налаживание устройства сводится к подбору конденсатора для получения требуемого режима зажигания лампы. Я использовал конденсатор на 100 мкф – результатом стала пауза от момента включения до момента зажигания лампы в 2 секунды.
    Немаловажным является отсутствие мерцания лампы, как это наблюдалось при реализации других схем. Для облегчения жизни другим заинтересованным самодельщикам выкладываю фото готового гаджета и

    При конструировании блоков питания усилителей часто возникают проблемы, никак не связанные с самим усилителем, или являющиеся следствием применённой элементной базы. Так в блоках питания транзисторных усилителей большой мощности часто возникает проблема реализовать плавное включение блока питания, то есть обеспечить медленный заряд электролитических конденсаторов в сглаживающем фильтре, которые могут иметь весьма значительную ёмкость и, без принятия соответствующих мер, в моменты включения просто выведут из строя диоды выпрямителя.

    В блоках питания ламповых усилителей любой мощности необходимо обеспечить задержку подачи высокого анодного напряжения до прогрева ламп, чтобы избежать преждевременного обеднения катода и как следствие существенного сокращения ресурса лампы. Конечно, при использовании кенотронного выпрямителя эта проблема решается сама собой. Но в случае использования обычного мостового выпрямителя с LC-фильтром, без дополнительного устройства не обойтись.

    Обе вышеизложенные проблемы позволяет решить простое устройство, которое может быть легко встроено как в транзисторный, так и в ламповый усилитель.

    Схема устройства.

    Принципиальная схема устройства плавного включения представлена на рисунке:

    Увеличение по клику

    Переменное напряжение на вторичной обмотке трансформатора ТР1 выпрямляется диодным мостом Br1 и стабилизируется интегральным стабилизатором VR1. Резистор R1 обеспечивает плавный заряд конденсатора C3. Когда напряжение на нём достигнет пороговой величины, откроется транзистор Т1, в результате чего сработает реле Rel1. Резистор R2 обеспечивает разряд конденсатора C3 при выключении устройства.

    Варианты включения.

    Контактная группа реле Rel1 подключается в зависимости от типа усилителя и организации блока питания.

    Для примера, чтобы обеспечить плавный заряд конденсаторов в блоке питания транзисторного усилителя мощности , представленное устройство можно использовать для шунтирования балластного резистора после заряда конденсаторов, чтобы исключить потери мощности на нём. Возможный вариант включения показан на схеме:

    Номиналы предохранителя и балластного резистора не указаны, так как выбираются, исходя из мощности усилителя и ёмкости конденсаторов сглаживающего фильтра.

    В ламповом усилителе представленное устройство поможет организовать задержку подачи высокого анодного напряжения до прогрева ламп, что позволяет существенно продлить их ресурс работы. Возможный вариант включения представлен на рисунке:

    Схема задержки здесь включается одновременно с накальным трансформатором. После прогрева ламп включится реле Rel1, в результате чего сетевое напряжение будет подано на анодный трансформатор.

    Если в вашем усилителе используется один трансформатор и для питания цепей накала ламп, и для анодного напряжения, тогда контактную группу реле следует перенести в цепь вторичной обмотки анодного напряжения .

    Элементы схемы задержки включения (плавного пуска):

    • Предохранитель: 220В 100мА,
    • Трансформатор: любой маломощный с выходным напряжением 12-14В,
    • Диодный мост: любой малогабаритный с параметрами 35В/1А и выше,
    • Конденсаторы: С1 — 1000мкФ 35В, С2 — 100нФ 63В, С3 — 100мкФ 25В,
    • Резисторы: R1 — 220кОм, R2- 120 кОм,
    • Транзистор: IRF510,
    • Интегральный стабилизатор: 7809, LM7809, L7809, MC7809 (7812),
    • Реле: с рабочим напряжением обмотки 9В (12В для 7812) и контактной группой соответствующей мощности.

    Из-за малого тока потребления микросхему стабилизатора и полевой транзистор можно монтировать без радиаторов.

    Однако у кого-то может возникнуть идея отказаться от лишнего, пусть и малогабаритного, трансформатора и запитать схему задержки от напряжения накала. Учитывая, что стандартное значение напряжения накала ~6.3В, придётся заменить стабилизатор L7809 на L7805 и применить реле с рабочим напряжением обмотки 5В. Такие реле обычно потребляют значительный ток, в этом случае микросхему и транзистор придётся снабдить небольшими радиаторами.

    При использовании реле с обмоткой на 12В (как-то чаще встречаются) микросхему интегрального стабилизатора следует заменить на 7812 (L7812, LM7812, MC7812).

    С указанными на схеме номиналами резистора R1 и конденсатора С3 время задержки включения составляет порядка 20 секунд . Для увеличения временного интервала необходимо увеличить ёмкость конденсатора С3.

    Статья подготовлена по материалам журнала «АудиоИкспресс»

    Вольный перевод Главного редактора «РадиоГазеты».

    В некоторых случаях возникает необходимость в регулировании или управлении яркостью свечения одной или нескольких ламп. Для этого существует специальная схема плавного включения ламп накаливания, позволяющая полностью контролировать этот процесс. В настоящее время, разработано и применяется большое количество подобных устройств. Все они имеют собственные положительные и отрицательные стороны. Некоторые из них отличаются большими размерами, незначительным сроком службы.

    Отдельные конструкции могут иметь излишне увеличенное число компонентов, низкий коэффициент полезного действия. Однако, существуют схемы, практически лишенные этих недостатков и прекрасно выполняющие все необходимые функции. Для того, чтобы правильно выбрать наиболее оптимальный вариант, нужно знать принцип и порядок работы таких устройств.

    Принцип работы плавного включения

    Как правило, качественные современные устройства отличаются компактностью и могут подключаться в разрыв любых проводов, независимо от того, фаза это или ноль. Поэтому, при наличии уже действующей схемы освещения, устройство плавного включения может быть подключено без особых проблем. При желании, сам прибор размешается непосредственно внутри корпуса люстры, настольной лампы или бра.

    Основными существующими компонентами являются лампа накаливания и сам выключатель. Все остальные подключения строятся вокруг них, играя дополнительную роль. В таких схемах может использоваться и более одной лампы накаливания. В этом случае, они соединяются параллельно, а их суммарный ток не должен быть больше допустимого тока . В противном случае, симистор просто перегорит. Включение симистора в цепь производится в разрыв провода, расположенный между выключателем. При выключенном симисторе, конденсатор разряжен, а напряжения на нем нет вообще.

    При включении симистора, конденсатор начинает заряжаться. В результате, происходит открытие динистора за счет увеличения прилагаемого напряжения. После этого, открывается второй симистор, что приводит к увеличению яркости лампы накаливания. Весь этот процесс управляется с помощью интегратора.

    Уменьшение или увеличение скорости, с какой нарастает яркость свечения, осуществляется путем подбора . При стандартном сопротивлении в 300 килоом, полная яркость лампы накаливания наступит в течение 10 секунд. Для того. Чтобы полностью разрядить конденсаторы, применяются два резистора. Разрядка производится при отключенном выключателе, а устройство готовится к новому включению.

    Когда работает схема плавного включения ламп накаливания, напряжение на них составляет всего 200 вольт при стандартном напряжении в сети 220-230 вольт. Это позволяет значительно увеличить срок службы таких ламп.

    Плавное включение лампы накаливания

    Лампы накаливания до сих пор остаются популярными, благодаря низкой цене. Они широко применяются во вспомогательных помещениях, где требуется частое переключение света. Устройства постоянно развиваются, в последнее время стали часто применять галогенную лампу. Чтобы увеличить их срок эксплуатации и уменьшить энергопотребление, применяют плавное включение ламп накаливания. Для этого подаваемое напряжение должно плавно возрастать в течение короткого промежутка времени.

    Плавное включение лампы накаливания

    У холодной спирали электрическое сопротивление в 10 раз ниже по сравнению с разогретой. В результате при зажигании лампочки на 100 Вт ток достигает 8 А. Не всегда нужна высокая яркость свечения тела накала. Поэтому возникла необходимость создать устройства плавного включения.

    Принцип действия

    Для равномерного нарастания подаваемого напряжения достаточно, чтобы фазовый угол увеличивался всего за несколько секунд. Бросок тока сглаживается, и спирали плавно разогреваются. На рисунке ниже приведена одна из простейших защитных схем.

    Схема устройства защиты от перегорания галогенных ламп и накаливания на тиристоре

    При включении отрицательная полуволна подается на лампу через диод (VD2), питание составляет всего половину напряжения. В положительный полупериод конденсатор (С1) заряжается. Когда величина напряжения на нем поднимется до величины открывания тиристора (VS1), на лампу подается напряжение сети полностью, и пуск завершается свечением в полный накал.

    Схема устройства защиты от перегорания лампы на симисторе

    Схема на рисунке выше работает на симисторе, пропускающем ток в обоих направлениях. При включении лампы отрицательный ток проходит через диод (VD1) и резистор (R1) на электрод управления симистора. Тот открывается и пропускает одну половину полупериодов. В течение нескольких секунд заряжается конденсатор (С1), после чего происходит открытие положительных полупериодов, и на лампу полностью подается напряжение сети.

    Устройство на микросхеме КР1182ПМ1 позволяет производить пуск лампы с плавным наращиванием напряжения от 5 В до 220 В.

    Схема устройства: пуск ламп накаливания или галогенных с фазовым регулированием

    Микросхема (DA1) состоит из двух тиристоров. Развязка между силовой частью и схемой управления производится симистором (VS1). Напряжение в схеме управления не превышает 12 В. К его управляющему электроду сигнал подается с вывода 1 фазового регулятора (DA1) через резистор (R1). Пуск схемы происходит при размыкании контактов (SA1). При этом конденсатор (С3) начинает заряжаться. От него начинает работать микросхема, повышая ток, проходящий к управляющему электроду симистора. Он начинает постепенно открываться, увеличивая напряжение на лампе накаливания (EL1). Временная выдержка на ее загорание определяется величиной емкости конденсатора (С3). Слишком большую ее делать не следует, поскольку при частых переключениях схема не будет успевать подготавливаться к новому запуску.

    При замыкании вручную контактов (SA1) начинается разрядка конденсатора на резистор (R2) и плавное отключение лампы. Время ее включения изменяется с 1 до 10 сек при соответствующем изменении емкости (С3) от 47 мкф до 470 мкф. Время гашения лампы определяется величиной сопротивления (R2).

    Схема защищена от помех резистором (R4) и конденсатором (С4). Печатная плата со всеми деталями помещается на задних клеммах выключателя и устанавливается вместе с ним в коробку.

    Пуск лампы происходит при отключении выключателя. Для подсветки и индикации напряжения установлена лампа тлеющего разряда (HL1).

    Устройства плавного включения (УПВЛ)

    Моделей выпускается много, они различаются по функциям, цене и качеству. УПВЛ, которое можно приобрести в магазине, подключается последовательно к лампе на 220 В. Схема и внешний вид показаны на рисунке ниже. Если напряжение питания светильников составляет 12 В или 24 В, устройство подключается перед понижающим трансформатором последовательно к первичной обмотке.

    Схема работы УПВЛ для плавного включения ламп на 220 В

    Устройство должно соответствовать подключаемой нагрузке с небольшим запасом. Для этого подсчитывается количество ламп и их общая мощность.

    Из-за небольших габаритов УПВЛ помещается под колпаком люстры, в подрозетнике или в соединительной коробке.

    Устройство “Гранит”

    Особенностью устройства является то, что оно дополнительно защищает светильники от скачков напряжения в домашней сети. Характеристики “Гранита” следующие:

    • номинальное напряжение – 175-265 В;
    • температурный диапазон – от -20 0 С до +40 0 С;
    • номинальная мощность –от 150 до 3000 Вт.

    Подключение прибора производится также последовательно со светильником и выключателем. Устройство помещается вместе с выключателем в монтажной коробке, если его мощность позволяет. Также его устанавливают под крышкой люстры. Если провода к ней подводятся напрямую, защитное устройство устанавливают в распределительном щитке, после автоматического выключателя.

    Диммеры или светорегуляторы

    Целесообразно применять устройства, которые создают плавное включение ламп, а также обеспечивают регулирование их яркости. Модели диммеров имеют следующие возможности:

    • задание программ работы ламп;
    • плавное включение и отключение;
    • управление с помощью пульта, хлопком, голосом.

    При покупке следует сразу определиться с выбором, чтобы не платить лишние деньги за ненужные функции.

    Перед монтажом нужно выбрать способы и места управления лампами. Для этого необходимо сделать соответствующую электропроводку.

    Схемы подключений

    Схемы могут быть разной сложности. При любой работе сначала отключается напряжение с необходимого участка.

    Простейшая схема подключения изображена на рисунке ниже (а). Светорегулятор можно установить вместо обычного выключателя.

    Схема подключения диммера в разрыв питания лампы

    Устройство подключается в разрыв фазного провода (L), а не нулевого (N). Между нулевым проводом и диммером располагается лампа. Соединение с ней получается последовательным.

    На рисунке (б) обозначена схема с выключателем. Подключение остается прежним, но к нему добавляется обычный выключатель. Его можно установить около двери в разрыв между фазой и диммером. Светорегулятор располагается около кровати с возможностью управления освещением, не вставая с нее. Выходя из комнаты, свет выключается, а при возвращении производится пуск лампы с настроенной прежде яркостью.

    Для управления люстрой или светильником можно применять 2 диммера, расположенные в разных местах комнаты (рис. а). Между собой они подключаются через распределительную коробку.

    Схема управления лампой накаливания: а – с двумя диммерами; б – с двумя проходными выключателями и диммером

    Такое подключение позволяет независимо регулировать яркость с двух мест, но проводов понадобится больше.

    Проходные выключатели нужны для включения света с разных сторон помещения (рис. б). Диммер при этом нужно включить, иначе лампы на выключатели не будут реагировать.

    Особенности диммеров:

    1. Экономия электроэнергии с помощью диммера достигается небольшая – не более 15 %. Остальная часть потребляется регулятором.
    2. Устройства чувствительны к повышению температуры среды. Их не нужно эксплуатировать, если она поднимется выше 27 0 С.
    3. Нагрузка должна быть не ниже 40 Вт, иначе срок службы регулятора сокращается.
    4. Диммеры применяются только для тех типов устройств, которые указаны в паспортах.

    Включение. Видео

    Как происходит плавное включение ламп накаливания, расскажет это видео.

    Устройства плавного пуска и отключения ламп накаливания и галогенных позволяют значительно повысить срок их эксплуатации. Целесообразно применять диммеры, которые к тому же позволяют регулировать яркость свечения.

    Похожие статьи
     
    Категории